• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 47
  • 42
  • 40
  • 26
  • 22
  • 19
  • 10
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 524
  • 101
  • 90
  • 90
  • 64
  • 63
  • 59
  • 58
  • 54
  • 47
  • 45
  • 42
  • 41
  • 41
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

ANALYSES OF DEFORMATION IN VISCOELASTIC SANDWICH COMPOSITES SUBJECT TO MOISTURE DIFFUSION

Joshi, Nikhil P. 16 January 2010 (has links)
Sandwich composites with polymer foam core are currently used in load-bearing components in buildings and naval structures due to their high strength to weight and stiffness to weight ratios, excellent thermal insulation, and ease of manufacturing. During their service time, sandwich composites are exposed to various external mechanical and hygro-thermal stimuli. It is known that the constituent properties of the sandwich composites are greatly influenced by the temperature and moisture fields. For example extreme temperature changes and humid environmental conditions can significantly degrade the stiffness and strength of the polymer foam core. This study analyzes the effect of moisture diffusion on the deformation of viscoelastic sandwich composites, which are composed of orthotropic fiber-reinforced laminated skins and viscoelastic polymeric foam core. It is assumed that the elastic and time-dependent (transient) moduli at any particular location in the foam core depend on the moisture concentration at that location. Sequentially coupled analyses of moisture diffusion and deformation are performed to predict overall performance of the studied viscoelastic sandwich systems. A time and moisture dependent constitutive model is used for the polymer foam core. A time-integration algorithm is developed to link this constitutive model to finite element (FE) analyses framework. The overall time-dependent responses of the sandwich composites subject to moisture diffusion are analyzed using 2D plane strain and 3D continuum elements. A 23% increase in the transverse deformation of the viscoelastic sandwich beam is observed due to the moisture degradation. Experimental data and analytical models available in the literature are used to verify the results obtained from the FE code. Parametric studies on the effects of different diffusivity ratios of skin and core materials on stress, strain and displacement fields have been analyzed. At the initial times the effect of moisture on the field variables is found to be most pronounced in the case with the highest diffusivity ratio. Contributions of moisture dependent elastic and the time-dependent moduli to the overall stress, strain and displacement field have been studied. The structural analysis of the sandwich composite under combined moisture diffusion and mechanical loading for two kinds of problems using FE method is performed to complete the study.
42

Nonlinear vibration analysis of multilayer sandwich structure by incremental finite elements /

Iu, Vai-pan. January 1985 (has links)
Thesis--Ph. D., University of Hong Kong, 1986.
43

An analysis of viscoelastic damping characteristics of a simply-supported sandwich beam

Chatterjee, Ashoke 12 1900 (has links)
No description available.
44

Mechanical behavior of superplastically formed sandwich panels

Kim, Taiwhan David 08 1900 (has links)
No description available.
45

Viscoelastic damping of beams /

Messalti, Mansour. January 1988 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1988. / Includes bibliographical references (leaf 48).
46

Damping of elastic-viscoelastic beams /

West, Ray A. January 1992 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1992. / Typescript. Includes bibliographical references.
47

Response of laser welded sandwich panels subject to initial velocity /

Baskiyar, Rajeev, January 2007 (has links)
Thesis (M.S.) in Mechanical Engineering--University of Maine, 2007. / Includes vita. Includes bibliographical references (leaves 97-98).
48

The quasi-static and dynamic responses of metallic sandwich structures

St-Pierre, Luc January 2012 (has links)
Lattice materials are used as the core of sandwich panels to construct light and strong structures. This thesis focuses on metallic sandwich structures and has two main objectives: (i) explore how a surface treatment can improve the strength of a lattice material and (ii) investigate the collapse response of two competing prismatic sandwich cores employed in ship hulls. First, the finite element method is used to examine the effect of carburisation and strain hardening upon the compressive response of a pyramidal lattice made from hollow tubes or solid struts. The carburisation surface treatment increases the yield strength of the material, but its effects on pyramidal lattices are not known. Here, it is demonstrated that carburisation increases the plastic buckling strength of the lattice and reduces the slenderness ratio at which the transition from plastic to elastic buckling occurs. The predictions also showed that strain hardening increases the compressive strength of stocky lattices with a slenderness ratio inferior to ten, but without affecting the collapse mode of the lattice. Second, the quasi-static three-point bending responses of simply supported and clamped sandwich beams with a corrugated core or a Y-frame core are compared via experiments and finite element simulations. The role of the face-sheets is assessed by considering beams with (i) front-and-back faces present and (ii) front face present, but back face absent. These two beam designs are used to represent single hull and double hull ship structures, and they are compared on an equal mass basis by doubling the thickness of the front face when the back face is absent. Beams with a corrugated core are found to be slightly stronger than those with a Y-frame core, and two collapse mechanisms are identified depending upon beam span. Short beams collapse by indentation and for this collapse mechanism, beams without a back face outperform those with front-and back faces present. In contrast, longbeams fail by Brazier plastic buckling and for this collapse mechanism, the presence of a back face strengthens the beam. Third, drop weight tests with an impact velocity of 5 m/s are performed on simply supported and clamped sandwich beams with a corrugated core or a Y-frame core. These tests are conducted to mimic the response of a sandwich hull in a ship collision. The responses measured at 5 m/s are found to be slightly stronger than those measured quasi-statically. The measurements are in reasonable agreement with finite element predictions. In addition, the finite element method is used to investigate whether the collapse mechanism at 5 m/s is different from the one obtained quasi-statically. The predictions indicate that sandwich beams that collapse quasi-statically by indentation also fail by indentation at 5 m/s. In contrast, the simulations for beams that fail quasi-statically by Brazier plastic buckling show that they collapse by indentation at 5 m/s. Finally, the dynamic indentation response of sandwich panels with a corrugated core or a Y-frame core is simulated using the finite element method. The panels are indented at a constant velocity ranging from quasi-static loading to 100 m/s, and two indenters are considered: a flat-bottomed indenter and a cylindrical roller. For indentation velocities representative of a ship collision, i.e. below 10 m/s, the predictions indicate that the force applied to the front face of the panel is approximately equal to the force transmitted to the back face. Even at such low indentation velocities, inertia stabilisation effects increase the dynamic initial peak load above its quasi-static value. This strengthening effect is more important for the corrugated core than for the Y-frame core. For velocities greater than 10 m/s, the force applied to the front face exceeds the force transmitted to the back face due to wave propagation effects. The results are also found to be very sensitive to the size of the flat-bottomed indenter; increasing its width enhances both inertia stabilisation and wave propagation effects. In contrast, increasing the roller diameter has a smaller effect on the dynamic indentation response. Lastly, it is demonstrated that material strain-rate sensitivity has a small effect on the dynamic indentation response of both corrugated and Y-frame sandwich panels.
49

DESIGN OF A DUAL WORKING ELECTRODE POTENTIOSTAT FOR REMOTE BIOSENSORS

VEPADHARMALINGAM, MURALIMANOHAR January 2000 (has links)
No description available.
50

Sandwich Design of a Platform Lift Floor / Sandwich design av plattformslyftgolv

Zhao, Ruizhi January 2022 (has links)
Mobility is a symbol of dignity. A platform lift enables everyone of different physical abilities to move vertically with ease. Currently, the platform lift by Aritco Lift is made of steel sheet metal. It is heavy, thus difficult to handle. Sandwich design is researched to see whether and, if possible,how much dead load reduction. A simulation model is produced in SolidWorks to facilitate the material selection and the sandwich design. Sandwiches of aluminium face sheets are investigated, although steel face sheet works as well. No recommendation on core material can be made. Connection methods are investigated in SolidWorks to join the 35mm-thick sandwich-based floor to the lift body without creating a large deflection. Several general directions are investigated. None yielded results sufficiently satisfactory, although two directions have provided results that are very close to the requirements. Simulations are conducted on a 40mm-thick sandwich using one of the optimal joint options, yielding better weight savings and deflection results. Certain honeycomb properties are approximated using formulae rather than measured or simulated directly. To quantify how significant is the deviation of the approximated model, simulations are conducted by changing the length, width, and height of the sandwiches modelled using both the approximation and exact geometry. Fatigue life analyses are conducted on two of the candidate floors. Both are comfortably within the limit imposed by the standards. The success of a design in this thesis hinged on the validity of the honeycomb model. The test results reject the honeycomb model as the deflection is significantly higher than simulated. Plastic deformation has also occurred, though more probably due to the deformation local at the weld. Even though honeycomb is demonstrated not to be able to meet the requirements on its own, sandwich as a category of structure should not be discounted as a whole. Environmental factor is a drawback for using large quantities of aluminium even considering the weight difference between the design and the original steel structure. / Rörlighet är en symbol för värdighet. En plattformslyft gör att alla med olika fysiska förmågor kan röra sig vertikalt med lätthet. För närvarande är plattformslyften av Aritco Lift gjord av stålplåt. Den är tung och därför svår att hantera. Sandwichdesign undersöks för att se om och, om möjligt, hur mycket egenlastreduktion kan åstadkommas. En simuleringsmodell tas fram i SolidWorks för att underlätta materialvalet och sandwichdesignen. Sandwichkonstruktioner av aluminiumplåtar undersöks, även om stålplåt fungerar också. Ingen rekommendation om kärnmaterial kan ges. Fogningsmetoder undersöks i SolidWorks för att sammanfoga det 35 mm tjocka sandwichbaserade golvet till lyftkroppen utan att skapa en stor nedböjning. Flera allmänna riktningar utreds. Ingen av dessa gav tillräckligt tillfredsställande resultat, trots att två riktningar har gett resultatsom ligger mycket nära kraven. Simuleringar utförs på en 40 mm tjock sandwich med ett av de optimala fogalternativen, vilket ger bättre viktbesparingar och nedböjningsresultat än förväntat. Vissa bikakeegenskaper uppskattas med formler snarare än att mätas eller simuleras direkt. För att kvantifiera hur betydande avvikelsen av den approximerade modellen är, genomförs simuleringar där längden, bredden och höjden ändras på de modellerade sandwicharna med användning av både approximationer och data från den exakta geometrin. Utmattningsanalyser genomförs på två av designförslagen. Båda är bekvämt inom de gränser som ställs av standarderna. Framgången för en design i denna avhandling hängde på giltigheten av honeycomb-modellen. Testresultaten förkastar modellen eftersom nedböjningen är betydligt högre än simulerad. Plastiskdeformation har också förekommit, men troligen på grund av den lokala deformationen vid svetsen. Även om honeycomb har visat sig inte kunna uppfylla kraven på egen hand, bör sandwich som strukturkategori inte bortses från som helhet. Miljöfaktorn är en nackdel för att använda stora mängder aluminium även med tanke på viktskillnaden mellan konstruktionen och den ursprungliga stålkonstruktionen.

Page generated in 0.0467 seconds