• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 47
  • 42
  • 40
  • 26
  • 22
  • 19
  • 10
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 524
  • 101
  • 90
  • 90
  • 64
  • 63
  • 59
  • 58
  • 54
  • 47
  • 45
  • 42
  • 41
  • 41
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Analysis and Testing of Laser Welded Steel Sandwich Panels

Yorulmaz, Serdar January 2008 (has links) (PDF)
No description available.
82

Impact on panels of sandwich construction

Rollins, Mark Andrew January 1990 (has links)
No description available.
83

Honeycombs with structured core for enhanced damping

Boucher, Marc-Antoine C. J. January 2015 (has links)
Honeycomb sandwich panels, formed by bonding a core of honeycomb between two thin face sheets, are in wide use in aerospace, automotive and marine applications due to their well-known excellent density-specific properties. There are many technological methods of damping vibrations, including the use of inherently lossy materials such as viscoelastic materials, viscous and friction damping and smart materials such as piezoelectrics. Some have been applied to damping of vibrations, in particular to sandwich panel and honeycomb structures, including viscoelastic inserts in the cell voids. Complete filling of the cell with foam, viscoelastic or particulate fillers have all been demonstrated to improve damping loss in honeycombs. However, the use of an additional damping material inside the core of a sandwich panel increases its mass, which is often deleterious and may also lead to a significant change in dynamic properties. The work presented in this thesis explores the competing demands of vibration damping and minimum additional mass in the case of secondary inserts in honeycomb-like structures. The problem was tackled by initially characterising the main local deformation mechanism of a unit cell within a sandwich panel subjected to vibration. Out-of-plane bending deformation of the honeycomb unit cell was shown to be the predominant mode of deformation for most of the honeycomb cells within a sandwich panel. The out-of-plane bending deformation of the honeycomb cells results in relatively high in-plane deformation of the cells close to the skins of the sandwich panels. It was also highlighted that the magnitude and loading of the honeycomb unit cell are dependent on its location within the honeycomb or sandwich panel and the mode shape of the panel. An optimisation study was carried out on diverse honeycomb unit cell geometries to find locations at which the relative displacement between the honeycomb cell walls of the void is maximal under in-plane loadings. These locations were shown to be dependant of the nature of the loading, i.e. in-plane tension/compression or in-plane shear loading of the honeycomb unit cell and the unit cell geometry. Analytical expressions and finite element analyses were used to investigate the partial filling of the honeycomb unit cell with a damping material, in this case a viscoelastic elastomer, in the target locations identified previously where the relative displacement between the honeycomb cell walls is maximal. Damping inserts in the form of ligaments partially filling the honeycomb cell void have shown to increase the density-specific loss modulus by 26% compared to cells completely filled with damping material for in-plane tension/compression loading. The form of the damping insert itself was then analysed for enhancement of the dissipation provided by the damping material. The shear lap joint (SLJ) damping insert placed in the location where the relative displacement between the honeycomb cell walls of the void is maximal under in-plane loadings was characterised with very significant damping improvements compared to honeycomb cells completely filled with viscoelastic material. A case study of a cantilever honeycomb sandwich panel with embedded SLJ damping inserts demonstrated their efficiency in enhancing the loss factor of the structure for minimum added mass and marginal variation of the first modal frequency of the structure. Partial filling of the cells of the honeycomb core was shown to be the most efficient at increasing damping on a density basis.
84

Comparative analysis of single-wythe, non-composite double-wythe, and composite double-wythe tilt-up panels

Sandoval, Robee Ybañez January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly Waggle Kramer / Insulated precast concrete sandwich panels are commonly used for exterior cladding on a building. In recent years, insulated tilt-up concrete sandwich panels are being used for the exterior load-bearing walls on a building. The insulation is sandwiched between exterior and interior concrete layers to reduce the heating and cooling costs for the structure. The panels can be designed as composite, partially composite, or non-composite. The shear ties are used to achieve these varying degrees of composite action between the concrete layers. A parametric study analyzing the standard, solid single-wythe tilt-up concrete wall panel and solid sandwich (double-wythe separated by rigid insulation) tilt-up concrete wall panels subjected to eccentric axial loads and out-of-plane seismic loads is presented. The sandwich tilt-up panel is divided into two categories – non-composite and composite wall panels. The height and width of the different types of tilt-up wall panel is 23 feet (21 feet plus 2-foot parapet) and 16 feet, respectively. The solid standard panel (non-sandwich) is 5.5 inches in thickness; the non-composite sandwich panel is composed of 3.5-inch architectural wythe, 2.5-inch rigid insulation, and 5.5-inch interior load bearing concrete wythe; and the composite sandwich panel is composed of 3.5-inch exterior, load bearing concrete wythe, 2.5-inch insulation, and 5.5-inch interior, load bearing concrete wythe. The procedure used to design the tilt-up wall panels is the Alternative Method for Out-of-Plane Slender Wall Analysis per Section 11.8 of ACI 318-14 Building Code Requirements for Structural Concrete and Commentary. The results indicated that for the given panels, the applied ultimate moment and design moment strength is the greatest for the composite sandwich tilt-up concrete panel. The standard tilt-up concrete panel exhibits the greatest service load deflection. The non-composite sandwich tilt-up concrete panel induced the greatest vertical stress. Additionally, the additional requirements regarding forming materials, casting, and crane capacity is covered in this report. Lastly, the energy efficiency due to the heat loss and heat gain of sandwich panels is briefly discussed in this report. The sandwich tilt-up panels exhibit greater energy efficiency than standard tilt-up panels with or without insulation.
85

Finite element analysis of a composite sandwich beam subjected to a four point bend

Hove, Darlington January 2011 (has links)
The work in this dissertation deals with the global structural response and local damage effects of a simply supported natural fibre composite sandwich beam subjected to a four-point bend. For the global structural response, we are investigating the flexural behaviour of the composite sandwich beam. We begin by using the principle of virtual work to derive the linear and nonlinear Timoshenko beam theory. Based on these theories, we then proceed to develop the respective finite element models and then implement the numerical algorithm in MATLAB. Comparing the numerical results with experimental results from the CSIR, the numerical model correctly and qualitatively recovers the underlying mechanics with some noted deviances which are explained at the end. The local damage effect of interest is delamination and we begin by reviewing delamination theory with more emphasis on the cohesive zone model. The cohesive zone model relates the traction at the interface to the relative displacement of the interface thereby creating a material model of the interface. We then carry out a cohesive zone model delamination case study in MSC.Marc and MSC.Mentat software packages. The delamination modelling is carried out purely as a numerical study as there are no experimental results to validate the numerical results.
86

Inter-laminar Stresses In Composite Sandwich Panels Using Variational Asymptotic Method (VAM)

Rao, M V Peereswara 04 1900 (has links) (PDF)
In aerospace applications, use of laminates made of composite materials as face sheets in sandwich panels are on the rise. These composite laminates have low transverse shear and transverse normal moduli compared to the in-plane moduli. It is also seen that the corresponding transverse strength values are very low compared to the in-plane strength leading to delaminations. Further, in sandwich structures, the core is subjected to significant transverse shear stresses. Therefore the interlaminar stresses (i.e., transverse shear and normal) can govern the design of sandwich structures. As a consequence, the first step in achieving efficient designs is to develop the ability to reliably estimate interlaminar stresses. Stress analysis of the composite sandwich structures can be carried out using 3-D finite elements for each layer. Owing to the enormous computational time and resource requirements for such a model, this process of analysis is rendered inefficient. On the other hand, existing plate/shell finite elements, when appropriately chosen, can help quickly predict the 2-D displacements with reasonable accuracy. However, their ability to calculate the thickness-wise distributions of interlaminar shear and normal stresses and 3-D displacements remains as a research goal. Frequently, incremental refinements are offered over existing solutions. In this scenario, an asymptotically correct dimensional reduction from 3-D to 2-D, if possible, would serve to benchmark any ongoing research. The employment of a mathematical technique called the Variational Asymptotic Method (VAM) ensures the asymptotical correctness for this purpose. In plates and sandwich structures, it is typically possible to identify (purely from the defined material distributions and geometry) certain parameters as small compared to others. These characteristics are invoked by VAM to derive an asymptotically correct theory. Hence, the 3-D problem of plates is automatically decomposed into two separate problems (namely 1-D+2-D), which then exchange relevant information between each other in both ways. The through-the-thickness analysis of the plate, which is a 1-D analysis, provides asymptotic closed form solutions for the 2-D stiffness as well as the recovery relations (3-D warping field and displacements in terms of standard plate variables). This is followed by a 2-D plate analysis using the results of the 1-D analysis. Finally, the recovery relations regenerate all the required 3-D results. Thus, this method of developing reduced models involves neither ad hoc kinematic assumptions nor any need for shear correction factors as post-processing or curve-fitting measures. The results are most general and can be made as accurate as desired, while the procedure is computationally efficient. In the present work, an asymptotically correct plate theory is formulated for composite sandwich structures. In developing this theory, in addition to the small parameters (such as small strains, small thickness-to-wavelength ratios etc.,) pertaining to the general plate theory, additional small parameters characterizing (and specific to) sandwich structures (viz., smallness of the thickness of facial layers com-pared to that of the core and smallness of elastic material stiffness of the core in relation to that of the facesheets) are used in the formulation. The present approach also satisfies the interlaminar displacement continuity and transverse equilibrium requirements as demanded by the exact 3-D formulation. Based on the derived theory, numerical codes are developed in-house. The results are obtained for a typical sandwich panel subjected to mechanical loading. The 3-D displacements, inter-laminar normal and shear stress distributions are obtained. The results are compared with 3-D elasticity solutions as well as with the results obtained using 3-D finite elements in MSC NASTRAN®. The results show good agreement in spite of the major reduction in computational effort. The formulation is then extended for thermo-elastic deformations of a sandwich panel. This thesis is organized chronologically in terms of the objectives accomplished during the current research. The thesis is organized into six chapters. A brief organization of the thesis is presented below. Chapter-1 briefly reviews the motivation for the stress analysis of sandwich structures with composite facesheets. It provides a literature survey on the stress analysis of composite laminates and sandwich plate structures. The drawbacks of the existing anlaytical approaches as opposed to that of the VAM are brought out. Finally, it concludes by listing the main contributions of this research. Chapter-2 is dedicated to an overview of the 3-D elasticity formulation of composite sandwich structures. It starts with the 3-D description of a material point on a structural plate in the undeformed and deformed configurations. Further, the development of the associated 3-D strain field is also described. It ends with the formulation of the potential energy of the sandwich plate structure. Chapter-3 develops the asymptotically correct theory for composite sandwich plate structure. The mathematical description of VAM and the procedure involved in developing the dimensionally reduciable structural models from 3-D elasticity functional is first described. The 1-D through-the-thickness analysis procedure followed in developing the 2-D plate model of the composite sandwich structure is then presented. Finally, the recovery relations (which are one of the important results from 1-D through-the-thickness analysis) to extract 3-D responses of the structure are obtained. The developed formulation is applied to various problems listed in chapter 4. The first section of this chapter presents the validation study of the present formulation with available 3-D elasticity solutions. Here, composite sandwich plates for various length to depth ratios are correlated with available 3-D elasticity solutions as given in [23]. Lastly, the distributions of 3-D strains, stresses and displacements along the thickness for various loadings of a typical sandwich plate structure are correlated with corresponding solutions using well established 3-D finite elements of MSC NASTRAN® commerical FE software. The developed and validated formulation of composite sandwich structure for mechanical loading is extended for thermo-elastic deformations. The first sections of this chapter describes the seamless inclusion of thermo-elastic strains into the 3-D elasticity formulation. This is followed by the 1-D through-the-thickness analysis in developing the 2-D plate model. Finally, it concludes with the validation of the present formulation for a very general thermal loading (having variation in all the three co-ordinate axes) by correlating the results from the present theory with that of the corresponding solutions of 3-D finite elements of MSC NASTRAN® FE commercial software. Chapter-6 summarises the conclusions of this thesis and recommendations for future work.
87

Blast Resistance of Non-Composite Tilt-Up Sandwich Panels and their Connections"

Barreiro, Jose January 2016 (has links)
Blast risk associated with terrorist threats and accidental explosions has become an international concern over the past decade and has provoked structural engineers to implement protective design measures. Recent advances in this area of research has seen tremendous improvements in mitigating this risk through the installation of retrofits, advanced structural design, or pre-emptive protective measures. Tilt-up and precast panel walls are constructed using a unique approach in which the walls are cast horizontally and lifted, or tilted, into their final vertical position. These unique structures are cost effective, energy efficient, and can be rapidly constructed. This approach is commonly applied to the construction of large industrial facilities and the construction of schools which are categorized as high importance structures in the National Building Code of Canada. These panels are inherently flexible and have a surplus of mass making them desirable for protective design applications, however their behaviour under blast induced loads is not well defined. This experimental research project investigates the behaviour of non-composite tilt-up sandwich (NCTS) panels and solid reinforced concrete (SRC) panels with realistic support conditions subjected to blast-induced shockwaves. Previous research shows that NCTS panels, identifiable by their large structural wythe, exhibit some degree of composite behaviour and require between 5% to 10% composite action for successful erection. Five scaled specimens were constructed following common procedures used in practice, equipped with identical data acquisition instruments, and tested at the University of Ottawa shock tube testing facility under similar blast pressure-impulse combinations. Test results for the NCTS and SRC panels are compared graphically in terms of displacement–time histories and sectional strain distributions. The data is evaluated to approximate the composite behaviour at mid-span of the NCTS panel. Analytical results generated, using “RC Blast,” single-degree-of-freedom analysis software developed at the University of Ottawa, were validated with empirical data and are presented graphically. Each specimen was equipped with connections similar to those commonly used in the construction of NCTS panels. These connections were experimentally studied under simulated blast pressures and analysed using CSA A23.3-04 guidelines for punching shear capacity. Modified support iii | P a g e reinforcement layouts and surface bonded FRP laminates were evaluated as strengthening and retrofit techniques to prevent support failure. Dynamic support reactions and predicted support resistances are tabulated for each shot of every panel. The results indicate that it is possible to accurately predict the flexural behaviour and support resistance of a NCTS panel using RC Blast and CSA A23.3-04 guidelines. Several factors considered in this analysis include boundary conditions, dynamic material properties, and shear tie degradation. This analysis of flexural behaviour is highly dependent on shear stiffness, which is directly related to the composite action within NCTS panels. Support resistance was increased significantly through application of the strengthening techniques outlined in this thesis.
88

Analysis of fillet function in wood-based sandwich construction

Kaneko, Tatsuhei January 1972 (has links)
When a porous honeycomb core is glued to plane facings to make a sandwich construction, glue fillets (concave menisci) are formed around the core cell edges. It is known that glue fillets play an important role in strengthening the bond of the construction, but only few studies on the real function of the fillet have been reported. This thesis investigates the relationships between fillet size and bonding strength in sandwich construction followed by a stress analysis of the fillets. Sandwich panels with various fillet sizes were produced by means of a glue applicator of original design using a modified phenol-resorcinol resin glue, kraft paper honeycomb cores and Douglas fir plywood facings. Tensile strength tests normal to the sandwich specimens of 1 by 1 inch, and flexure tests on the sandwich beams of 3.75 by 12 inches were performed. Fillet rupture sizes and actual fillet dimensions were measured. A highly significant correlation was found between fillet size and bonding strength. Larger fillets provided greater bonding strength. When a sandwich was subjected to tensile load, a vertical shear failure took place at the center of the fillet concave meniscus regardless of fillet size. By assuming the uniformity of fillet shape, the following equation: [symbol omitted]= my + d , was found to express the relationship between the vertical shear stress [symbol omitted] at the fracture point B and the fillet height y at B, where m and d were constants. Too large fillets had tendency to form voids or bubbles within them resulting in lowering strength values. The appearance of fracture in the glueline in flexure test specimens was similar to that in the tensile test. Most of the sandwich specimens with smaller fillets failed in the glueline, while those with larger fillets mostly failed in core shear. This observation also indicated the superiority of larger fillets in bonding of honeycomb-to-plywood. The cause of glueline failure in the flexure test was deemed to result from a complex system of shear, compression and tensile stresses. However, a mathematical expression describing that system of stresses was not found. / Forestry, Faculty of / Graduate
89

Computational semi-analytical method for the 3D elasticity bending solution of laminated composite and sandwich doubly-curved shells

Monge, J. C., Mantari, J. L., Arciniega, R. A. 15 October 2020 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / In this paper, a three-dimensional numerical solution for the bending study of laminated composite doubly-curved shells is presented. The partial differential equations are solved analytically by the Navier summation for the midsurface variables; this method is only valid for shells with constant curvature where boundary conditions are considered simply supported. The partial differential equations present different coefficients, which depend on the thickness coordinates. A semi-analytical solution and the so-called Differential Quadrature Method are used to calculate an approximated derivative of a certain function by a weighted summation of the function evaluated in a certain grin domain. Each layer is discretized by a grid point distribution such as: Chebyshev-Gauss-Lobatto, Legendre, Ding and Uniform. As part of the formulation, the inter-laminar continuity conditions of displacements and transverse shear stresses between the interfaces of two layers are imposed. The proper traction conditions at the top and bottom of the shell due to applied transverse loadings are also considered. The present results are compared with other 3D solutions available in the literature, classical 2D models, Layer-wise models, etc. Comparison of the results show that the present formulation correctly predicts through-the-thickness distributions for stresses and displacements while maintaining a low computational cost. / Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica
90

Inelastic buckling of sandwich plates

Wong, Yim-Hung Harry. January 1981 (has links)
No description available.

Page generated in 0.0469 seconds