• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • Tagged with
  • 15
  • 11
  • 10
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effects of high-fat feeding on skeletal muscle insulin signalling in sarcolipin knockout mice

Sayer, Ryan 18 August 2010 (has links)
Type II diabetes mellitus (T2DM) has been associated with the onset of diet-induced obesity, which is currently on the rise worldwide. T2DM is typically characterized by insulin resistance in peripheral tissues such as adipose tissue, liver, and skeletal muscle. In skeletal muscle it is widely accepted that the defective insulin action is due to the inability of the cell to sufficiently activate the insulin signalling pathway and promote systemic glucose uptake. The sarcolipin-null (KO) mouse is a potential novel model for diet-induced obesity and diabetes. KO mice become significantly more obese and display a greater glucose intolerance than wildtype (WT) mice following an 8-week high-fat diet (HFD; 42% calories from fat) but the underlying mechanisms are still unknown. In this study the role of defective skeletal muscle insulin signalling in the development of the impaired glucose tolerance in KO mice was investigated. It was hypothesized that the HFD fed KO mice would exhibit greater reductions in IRS1 tyr628 and Akt ser473 phosphorylation (i.e. decreased activation of the insulin signalling pathway) than controls. Furthermore, it was believed that KO mice would display increased phosphorylation of IRS1 ser307, which is commonly associated with insulin resistance. At 16-weeks of age KO mice and littermates were subdivided into two groups and placed on either a HFD (n=30) or chow diet (n=24) for an 8-week period. Changes in body weight, glucose tolerance, and insulin tolerance were assessed pre- and post-diet period. Following the completion of the diet intervention mice were treated with an intraperitoneal injection of insulin (0.75U/kg) or vehicle solution and sacrificed for tissue collection. Epididymal/inguinal and retroperitoneal fat pads were removed for assessment of whole body adiposity. Whole gastrocnemius muscle was excised and homogenized for Western blot analysis of several key proteins of the insulin signalling cascade. Following completion of the HFD KO mice (48.6 ± 1.6 g) weighed significantly more than HFD fed wildtype (WT) mice (41.5 ± 1.6 g), and all chow fed mice (KO: 36.8 ± 1.5 g; WT: 35.2 ± 1.2 g; p<0.001). Glucose tolerance testing showed that KO mice exhibited significantly greater glucose intolerance compared to control mice post-HFD (p<0.001). Insulin tolerance testing, however, revealed no change in insulin sensitivity in KO or WT mice post-HFD (p>0.05). The HFD fed KO mice (0.73 ± 0.06 g) had an elevated retroperitoneal fat pad weight than HFD fed WT (0.49 ± 0.05 g) and all chow fed mice (KO: 0.28 ± 0.04 g; WT: 0.24 ± 0.04 g; p<0.01). Western blot analysis revealed a similar reduction in insulin receptor substrate-1 (IRS1) tyr628 phosphorylation in both KO and WT mice following the HFD (Con WT: 2.82 ± 0.69; Con KO: 3.06 ± 0.73; HFD WT: 1.71 ± 0.28; HFD KO: 1.28 ± 0.11 fold increase over non-insulin stimulated mice; p<0.02). IRS1 ser307 phosphorylation was elevated in both genotypes post-HFD (HFD WT: 2.97 ± 1.19; HFD KO: 2.17 ± 0.59 fold increase over standard chow fed control mice; p<0.03). Insulin treatment did not stimulate phosphorylation of Akt ser473 in KO or WT mice regardless of diet (p>0.05). In summary there was no difference between KO and WT mice in skeletal muscle insulin sensitivity as assessed by the phosphorylation of insulin signalling intermediates. An increase in IRS1 ser307 phosphorylation appears to be the primary mechanism for the reduced activation of IRS1 following the HFD in both KO and WT mice. However, the results from the current investigation did not support the notion that impaired skeletal muscle insulin signalling is responsible for the more pronounced diet-induced glucose intolerance observed in KO mice. Future studies investigating the viability of skeletal muscle GLUT4 translocation and glucose uptake as well as the glucose-induced insulin secretion of pancreatic β-cells following consumption of a HFD would help elucidate the mechanism of glucose intolerance in KO mice.
12

Contextual Induction of Non-Shivering Thermogenesis and Skeletal Muscle Futile Calcium Cycling in Two Rat Models

Heemstra, Lydia A. 27 July 2021 (has links)
No description available.
13

La Sarcolipine, un régulateur de l’ATPase-Ca2+ SERCA1a : études in silico / Sarcolipin, a Regulator of Ca2+-ATPase SERCA1a : in Silico Studies

Barbot, Thomas 15 June 2018 (has links)
La Sarcolipine (SLN) est un hélice transmembranaire de 31 résidus dont la function est de reguler l’ATPase-Ca2+ SERCA1a. Ce régulateur peut subir une modification post-traductionnelle chez certaines espèces. Par exemple, chez le lapin, il est palmitoyle ou oleoylé sur le résidu Cys9. Pour comprendre au niveau moléculaire l’effet de cette modification post-traductionnelle sur la SLN, nous avons réalisé des simulations de dynamique moléculaire de la SLN de lapin insérée dans une bicouche de 1-palmitoyl-2-oléoyl-sn-glycéro-3-phosphocholine (POPC), non acylée et palmitoylée. L’analyse de ces simulations démontre que la palmitoylation n’affecte pas la structure secondaire, l’orientation (tilt et azimut), ainsi que l’enfouissemnt de la SLN dans la membrane. De plus, l’analyse de simulations tout atome de la SLN humaine insérée dans une bicouche de POPC montre que la SLN humaine a la même structure secondaire et orientation que la SLN de lapin mais est plus enfouie dans la membraneque celle de lapin, du fait de sa sequence en acides amines N-terminale plus hydrophobe.L’ATPase-Ca2+ SERCA1a, une ATPase de type P, est localisée dans la membrane du reticulum sarcoplasmique des cellules du muscle squelettique. Elle est impliquée dans les processus de contraction/relaxation musculaire en transportant rapidement le Ca2+ cytosolique dans le lumen du reticulum sarcoplasmique grâce à l’énergie fournie par l’hydrolyse de l’ATP. D’importants changements conformationnels de SERCA1a ont lieu durant son cycle catalytique comme le montrent les nombreuses structures cristallines de SERCA1a. En particulier, à l’état E1, la cavité contenant les sites de fixation du Ca2+ est ouverte vers le cytoplasme, tandis qu’à l’état E2, cette cavité est ouverte vers le lumen. La transition de l’état E1 à E2 nécessite la phosphorylation du résidu Asp351. Des structures 3D du complexe SERCA1a-SLN ont été déterminées par diffraction aux rayons X avec SERCA1a dans un état E1-Mg2+. Pour comprendre le mécanisme détaillé de la regulation de SERCA1a par la SLN, des simulations de dynamique moléculaire et des analyses des modes normaux (NMA) ont été réalisées en utilisant la structure 3D du complexe SERCA1a-SLN inséré dans une bicouche de POPC. Les résultats principaux de ces analyses sont les suivants : 1) la SLN régule les transitions E1.Mg2+ → E1.2Ca2+ et E1.Mg2+ → E2 ; 2) l’interaction de la SLN influe sur la structure et la dynamique de SERCA1a et modifie la position de l’hélice transmembranaire TM1 de sorte à ce que la cavité contenant les sites de fixation du Ca2+soit plus ouverte et que les sites soient plus accessibles ; 3) l’interaction de la SLN avec TM6 affecte deux regions de SERCA1a indispensables à sa fonction : en modifiant la structure et la dynamique de TM6, la SLN perturbe la position et la fluctuation des résidus des sites de fixation du Ca2+, leur conférant une conformation inapte à fixer le Ca2+. De même, l’interaction avec TM6 induit la courbure de TM5, ce qui affecte de façon indirecte le site de phosphorylation (éloigné de plus de 35 Å de la SLN) et conduit à l’inhibition de la phosphorylation du résidu Asp351.Nos résultats de cette étude in silico fournissent de nouveaux éléments concernant le mécanisme par lequel la SLN régule SERCA1a et qui pourrait être complétés par des travaux expérimentaux. / Sarcolipin (SLN), a transmembrane helix of 31 residues, binds to and regulates the Ca2+-ATPase SERCA1a. This regulator is post-translationnally modified in some species. For example, in rabbit, it is palmitoylated or oleoylated on its Cys9 residue. To understand at a molecular level, the effect of this post-translationnal modification on SLN, all-atom molecular dynamics simulations of unacylated and palmitoylated rabbit SLN embedded in a POPC bilayer were performed. Analysis of the simulations demonstrates that palmitoylation does not affect the secondary structure, the orientation (tilt and azimuth) as well as the burying of SLN within the membrane. In addition, the analyses of all-atom simulations of human SLN embedded in a POPC bilayer show that human SLN has the same secondary structure and orientation as rabbit SLN but is more buried within the membrane than rabbit SLN as a result of its more hydrophobic N-terminal amino acids sequence.The Ca2+ pump SERCA1a, a P-type ATPase, is localized in the sarcoplasmic reticulum membrane of striated muscle cells. It is involved in the contraction/relaxation process by fast pumping the cytoplasmic Ca2+ from the cytosol to the lumen of the sarcoplasmic reticulum using the energy of ATP hydrolysis. Large conformational changes of SERCA1a occur during its catalytic cycle as evidenced by the various crystal structures of SERCA1a. In particular, in the E1 state, the cavity that contains the Ca2+ binding sites is open toward the cytoplasm while in the E2 state, this cavity is open toward the lumen. The transition from the E1 to the E2 state involves the phosphorylation of Asp351 residue. 3D structures of SERCA1a-SLN complex have been determined by X-Ray diffraction, with SERCA1a in a E1-Mg2+ state. To understand the detailed mechanisms of SERCA1a regulation by SLN, molecular dynamics (MD) simulations and normal mode analysis (NMA) were performed using the 3D structures of SERCA1a-SLN complex embedded in a POPC bilayer. Main results from these analyses are the followings: 1) SLN regulates the E1-Mg2+ → E1-2Ca2+ and E1-Mg2+ → E2 state transitions; 2) interaction of SLN with SERCA1a impact the structure and dynamic of SERCA1a and modifies the position of the transmembrane helix TM1 such that the cavity that contains the Ca2+ binding sites is more widely opened and the Ca2+ binding sites more accessible; 3) SLN interaction with affects two regions essential to its function. By changing the structure and dynamic of TM6, SLN alters the position and fluctuations of residues involved in the Ca2+ binding sites, such that those sites are unable to bind Ca2+. This interaction with TM6 also induces TM5 bending and thus, indirectly modifies the phosphorylation site conformation, leading to the inhibition of Asp351 phosphorylation.Our results from these in silico studies provide new insights into the mechanism by which SLN regulates SERCA1a activity and could be completed by experimental work.
14

Regulation of the Sarco-endoplasmic Reticulum Calcium ATPase by Sarcolipin

Shaikh, Sana Ashfaque 21 May 2015 (has links)
No description available.
15

Sarcolipin Overexpression Improves Fatigue Resistance by Enhancing Skeletal Muscle Energetics

Sopariwala, Danesh Hooshmand 20 May 2015 (has links)
No description available.

Page generated in 0.0218 seconds