Spelling suggestions: "subject:"farsa"" "subject:"sarsa""
11 |
Aprendizado por esforço aplicado ao combate em jogos eletrônicos de estratégia em tempo realBotelho Neto, Gutenberg Pessoa 28 March 2014 (has links)
Made available in DSpace on 2015-05-14T12:36:51Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 4482656 bytes, checksum: 11b85e413d691749edd8d5be0d8f56d4 (MD5)
Previous issue date: 2014-03-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Electronic games and, in particular, real-time strategy (RTS) games, are
increasingly seen as viable and important fields for artificial intelligence research
because of commonly held characteristics, like the presence of complex environments,
usually dynamic and with multiple agents. In commercial RTS games, the computer
behavior is mostly designed with simple ad hoc, static techniques that require manual
definition of actions and leave the agent unable to adapt to the various situations it may
find. This approach, besides being lengthy and error-prone, makes the game relatively
predictable after some time, allowing the human player to eventually discover the
strategy used by the computer and develop an optimal way of countering it. Using
machine learning techniques like reinforcement learning is a way of trying to avoid this
predictability, allowing the computer to evaluate the situations that occur during the
games, learning with these situations and improving its behavior over time, being able
to choose autonomously and dynamically the best action when needed. This work
proposes a modeling for the use of SARSA, a reinforcement learning technique, applied
to combat situations in RTS games, with the goal of allowing the computer to better
perform in this fundamental area for achieving victory in an RTS game. Several tests
were made with various game situations and the agent applying the proposed modeling,
facing the game's default AI opponent, was able to improve its performance in all of
them, developing knowledge about the best actions to choose for the various possible
game states and using this knowledge in an efficient way to obtain better results in later
games / Jogos eletrônicos e, em especial, jogos de estratégia em tempo real (RTS), são
cada vez mais vistos como campos viáveis e importantes para pesquisas de inteligência
artificial por possuírem características interessantes para a área, como a presença de
ambientes complexos, muitas vezes dinâmicos e com múltiplos agentes. Nos jogos RTS
comerciais, o comportamento do computador é geralmente definido a partir de técnicas
ad hoc simples e estáticas, com a necessidade de definição manual de ações e a
incapacidade de adaptação às situações encontradas. Esta abordagem, além de demorada
e propícia a erros, faz com que o jogo se torne relativamente previsível após algum
tempo, permitindo ao jogador eventualmente descobrir a estratégia utilizada pelo
computador e desenvolver uma forma ótima de enfrentá-lo. Uma maneira de tentar
combater esta previsibilidade consiste na utilização de técnicas de aprendizagem de
máquina, mais especificamente do aprendizado por reforço, para permitir ao
computador avaliar as situações ocorridas durante as partidas, aprendendo com estas
situações e aprimorando seu conhecimento ao longo do tempo, sendo capaz de escolher
de maneira autônoma e dinâmica a melhor ação quando necessário. Este trabalho
propõe uma modelagem para a utilização de SARSA, uma técnica do aprendizado por
reforço, aplicada a situações de combate em jogos RTS, com o objetivo de fazer com o
que o computador possa se portar de maneira mais adequada nessa área, uma das mais
fundamentais para a busca da vitória em um jogo RTS. Nos testes realizados em
diversas situações de jogo, o agente aplicando a modelagem proposta, enfrentando o
oponente padrão controlado pela IA do jogo, foi sempre capaz de melhorar seus
resultados ao longo do tempo, obtendo conhecimento acerca das melhores ações a
serem tomadas a cada momento decisório e aproveitando esse conhecimento nas suas
partidas futuras
|
12 |
Reinforcement Learning-Based Test Case Generation with Test Suite Prioritization for Android Application TestingKhan, Md Khorrom 07 1900 (has links)
This dissertation introduces a hybrid strategy for automated testing of Android applications that combines reinforcement learning and test suite prioritization. These approaches aim to improve the effectiveness of the testing process by employing reinforcement learning algorithms, namely Q-learning and SARSA (State-Action-Reward-State-Action), for automated test case generation. The studies provide compelling evidence that reinforcement learning techniques hold great potential in generating test cases that consistently achieve high code coverage; however, the generated test cases may not always be in the optimal order. In this study, novel test case prioritization methods are developed, leveraging pairwise event interactions coverage, application state coverage, and application activity coverage, so as to optimize the rates of code coverage specifically for SARSA-generated test cases. Additionally, test suite prioritization techniques are introduced based on UI element coverage, test case cost, and test case complexity to further enhance the ordering of SARSA-generated test cases. Empirical investigations demonstrate that applying the proposed test suite prioritization techniques to the test suites generated by the reinforcement learning algorithm SARSA improved the rates of code coverage over original orderings and random orderings of test cases.
|
13 |
Prediction of Protein-Protein Interactions Using Deep Learning TechniquesSoleymani, Farzan 24 April 2023 (has links)
Proteins are considered the primary actors in living organisms. Proteins mainly perform their functions by interacting with other proteins. Protein-protein interactions underpin various biological activities such as metabolic cycles, signal transduction, and immune response. PPI identification has been addressed by various experimental methods such as the yeast two-hybrid, mass spectrometry, and protein microarrays, to mention a few. However, due to the sheer number of proteins, experimental methods for finding interacting and non-interacting protein pairs are time-consuming and costly. Therefore a sequence-based framework called ProtInteract is developed to predict protein-protein interaction. ProtInteract comprises two components: first, a novel autoencoder architecture that encodes each protein's primary structure to a lower-dimensional vector while preserving its underlying sequential pattern by extracting uncorrelated attributes and more expressive descriptors. This leads to faster training of the second network, a deep convolutional neural network (CNN) that receives encoded proteins and predicts their interaction. Three different scenarios formulate the prediction task. In each scenario, the deep CNN predicts the class of a given encoded protein pair. Each class indicates different ranges of confidence scores corresponding to the probability of whether a predicted interaction occurs or not. The proposed framework features significantly low computational complexity and relatively fast response. The present study makes two significant contributions to the field of protein-protein interaction (PPI) prediction. Firstly, it addresses the computational challenges posed by the high dimensionality of protein datasets through the use of dimensionality reduction techniques, which extract highly informative sequence attributes. Secondly, the proposed framework, ProtInteract, utilises this information to identify the interaction characteristics of a protein based on its amino acid configuration. ProtInteract encodes the protein's primary structure into a lower-dimensional vector space, thereby reducing the computational complexity of PPI prediction. Our results provide evidence of the proposed framework's accuracy and efficiency in predicting protein-protein interactions.
|
Page generated in 0.0285 seconds