• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • 2
  • Tagged with
  • 15
  • 15
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient global gravity field determination from satellite-to-satellite tracking

Han, Shin-Chan, January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains xvii, 198 p.; also includes graphics (some col.). Includes abstract and vita. Advisor: Christopher Jekeli, Dept. of Geodetic Science and Surveying. Includes bibliographical references (p. 192-198).
2

The integration and application of multi-satellite radar altimetry /

Urban, Timothy James, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 334-349). Available also in a digital version from Dissertation Abstracts.
3

Near real-time precise orbit determination of low earth orbit satellites using an optimal GPS triple-differencing technique

Bae, Tae-Suk, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 174-186).
4

Poroelastic rebound following the 2011 Tohoku-oki earthquake (Mw=9.0) as deduced from geodetic data and its application to infer the Poisson's ratio / 測地データにより推定された2011年東北 地方太平洋沖地震(Mw=9.0)に伴う間隙弾性反発とそのポアッソン比の推定への応用

Hidayat, Panuntun 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21580号 / 理博第4487号 / 新制||理||1644(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 宮﨑 真一, 教授 福田 洋一, 教授 橋本 学 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
5

Direct evaluation of the earth's gravity anomaly field from orbital analysis of artificial earth satellites /

Obenson, Gabriel Francis Tambe January 1970 (has links)
No description available.
6

DEM generation and ocean tide modeling over Sulzberger Ice Shelf, West Antarctica, using synthetic aperture radar interferometry

Baek, Sang-Ho, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 132-144).
7

Zur Realisierung eines terrestrischen Referenzsystems in globalen und regionalen GPS-Netzen

Rülke, Axel 27 September 2009 (has links) (PDF)
Die geodätischen Beobachtungsverfahren leisten auf verschiedene Weise Beiträge zur Erforschung des Systems Erde: Einerseits beobachten sie die rezenten Prozesse und ihre zeitlichen Variationen direkt, andererseit liefert sie die Grundlage für die konsistente Betrachtung aller Einflüsse in einem einheitlichen geometrischen und gravimetrischen Bezug. Das Projekt des Global Geodetic Observing System (GGOS) der Internationalen Assoziation für Geodäsie (IAG) soll die Voraussetzungen zur Vereinigung der verschiedenen geodätischen Beobachtungsverfahren, Modelle und Auswertemethoden mit dem Ziel schaffen, mit einem konsistenten Satz geodätischer Parameter ein hochgenaues Monitoring des Systems Erde zu ermöglichen. Die Realisierung geodätischer Bezugssysteme mit höchsten Genauigkeitsansprüchen ist in diesem Kontext eine zentrale Aufgabe des GGOS und Thema der vorliegenden Arbeit. In der derzeit üblichen Darstellung umfasst eine Realisierung des Terrestrischen Referenzsystems (TRS) Stationspositionen zu einer spezifischen Epoche und ihre linearen Änderungen mit der Zeit. In diesem Konzept führen alle nichtlinearen Stationsbewegungen zu residualen Abweichungen, die geowissenschaftlich interpretiert werden können. Der natürliche Ursprung eines globalen TRS, so auch des International Terrestrial Reference System (ITRS), liegt im Massezentrum des Systems Erde (CM). Mit Hilfe dynamischer Satellitenverfahren, wie GPS, lässt sich dieser Ursprung aus geodätischen Beobachtungen realisieren. In einem konsistenten Ausgleichungsansatz werden Satellitenbahnen, Stationspositionen und die in Kugelflächenfunktionen niedrigen Grades modellierte Auflastdeformation gemeinsam geschätzt. Die Grundlage der Realisierung des ITRS bilden in einem gemeinsamen Projekt der TU Dresden, der TU München und des GFZ Potsdam reprozessierte Beobachtungen eines über 200 Stationen umfassenden globalen GPS-Netzes des Beobachtungszeitraums 1994 bis 2007. Nach der Vorstellung der Grundprinzipien des GPS und seiner wesentlichen Fehlereinflüsse erfolgt die Beschreibung der Analyse der Beobachtungsdaten selbst. Sie umfasst die einheitliche Auswertung über den gesamten Zeitraum sowie Verbesserungen in der Modellierung der atmosphärischen Einflüsse und der Charakteristika der Sende- und Empfangsantennen sowie die Nutzung der Normalgleichungen zu Realisierung des ITRS. Der abgeleitete Terrestrische Referenzrahmen (TRF) wird Potsdam-Dresden-Reprocessing 2007 (PDR07) genannt. Zur Beurteilung der Genauigkeit und Zuverlässigkeit dieses TRF werden umfangreiche Analysen durchgeführt. So wird der PDR07 u.a. mit weiteren Realisierungen des ITRS, dem ITRF2000, dem ITRF2005 und den Realisierungen des International GNSS Service (IGS) IGb00 und IGS05, verglichen. Für eine Vielzahl geodynamischer Anwendungen werden GPS-Stationen in Messkampagnen beobachtet. Die hochgenaue Realisierung des ITRS in diesen regionalen GPS-Netzen ist für die geodynamische Interpretation der Ergebnisse zwingend erforderlich. Am Beispiel eines regionalen GPS-Netzes in der Antarktis wird untersucht, wie sich das ITRS in derartigen Netzen realisieren lässt und mit welcher Genauigkeit lineare Stationsbewegungen aus Kampagnenmessungen abgeleitet werden können. Im Anschluss werden die erhaltenen Bewegungsraten geodynamisch interpretiert: Aus den horizontalen Bewegungsraten wird die Bewegung der Antarktischen Kontinentalplatte im Konzept der Globaltektonik bestimmt und ihre innere Stabilität bewertet. Die vertikalen Stationsbewegungen werden genutzt, um Aussagen über rezente Krustendeformationen aufgrund glazialisostatischer Ausgleichsbewegungen und rezenter Massenvariationen des antarktischen Eises zu treffen. / The geodetic observation techniques contribute in several ways to the research of the system Earth: On the one hand they observe the recent processes and their variations in time directly, on the other hand they provide the basis for a consistent description of all effects in a consistent geometrical and gravimetrical reference. Within the project Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) the prerequisites for the combination of geodetic observation techniques, models and analysis strategies shall be created in order to enable a high accurate monitoring of the system Earth with consistent geodetic parameters. In this context the realization of geodetic reference systems with highest accuracy is a central task of the GGOS and subject of this thesis. At present, a common realization of the Terrestrial Reference System (TRS) consists of station positions according to a specific epoch and their linear changes with time. In this concept non-linear station motions yield to residual variations, which may be used for geoscientific interpretations. The natural origin of a global TRS, and this is also the case for the International Terrestrial Reference System (ITRS), is the center of mass of the system Earth (CM). This origin can be realized by observations of dynamic satellite techniques, such as GPS. In a consistent approach satellite orbits, stations positions and the lower degrees of harmonic surface mass load coefficients are estimated simultaneously. The ITRS is realized based on reprocessed observations of a global GPS network. In a joint effort TU Dresden, TU München and GFZ Potsdam analyzed the data of more than 200 stations of the observation time span 1994 to 2007. After an introduction to the basic principles of GPS and its major error sources the data analysis is described. This covers a homogeneous analysis over the entire period, improvements in atmosphere modeling and antenna phase center modeling as well as the usage of normal equations for the ITRS realization. The determined Terrestrial Reference Frame (TRF) is named Potsdam-Dresden-Reprocessing 2007 (PDR07). In order to assess the accuracy and stability of this TRF a variety of analyses is performed. For example, PDR07 is compared to other ITRS realizations, such as the ITRF2000, the ITRF2005 as well as the realizations of the International GNSS Service (IGS) IGb00 and IGS05. GPS campaign observations are often used to investigate geodynamic phenomena. The realization of the ITRS with highest accuracy in these regional GPS networks is essential for the geodynamic interpretation of the results. A regional GPS network in Antarctica is used to investigate the optimal way to realize the ITRS in such networks and the accuracy of linear station rates determined from campaign observations. Subsequently, the station rates are used for geodynamic interpretations: The horizontal station rates are used to determine the movement of the Antarctic Plate in the concept of global plate kinematics and to assess the inner stability of the Antarctic Plate. The vertical station rates are used to evaluate recent crustal deformations caused by glacial isostatic adjustment and recent mass changes of the Antarctic ice sheet.
8

Zur Realisierung eines terrestrischen Referenzsystems in globalen und regionalen GPS-Netzen

Rülke, Axel 10 July 2009 (has links)
Die geodätischen Beobachtungsverfahren leisten auf verschiedene Weise Beiträge zur Erforschung des Systems Erde: Einerseits beobachten sie die rezenten Prozesse und ihre zeitlichen Variationen direkt, andererseit liefert sie die Grundlage für die konsistente Betrachtung aller Einflüsse in einem einheitlichen geometrischen und gravimetrischen Bezug. Das Projekt des Global Geodetic Observing System (GGOS) der Internationalen Assoziation für Geodäsie (IAG) soll die Voraussetzungen zur Vereinigung der verschiedenen geodätischen Beobachtungsverfahren, Modelle und Auswertemethoden mit dem Ziel schaffen, mit einem konsistenten Satz geodätischer Parameter ein hochgenaues Monitoring des Systems Erde zu ermöglichen. Die Realisierung geodätischer Bezugssysteme mit höchsten Genauigkeitsansprüchen ist in diesem Kontext eine zentrale Aufgabe des GGOS und Thema der vorliegenden Arbeit. In der derzeit üblichen Darstellung umfasst eine Realisierung des Terrestrischen Referenzsystems (TRS) Stationspositionen zu einer spezifischen Epoche und ihre linearen Änderungen mit der Zeit. In diesem Konzept führen alle nichtlinearen Stationsbewegungen zu residualen Abweichungen, die geowissenschaftlich interpretiert werden können. Der natürliche Ursprung eines globalen TRS, so auch des International Terrestrial Reference System (ITRS), liegt im Massezentrum des Systems Erde (CM). Mit Hilfe dynamischer Satellitenverfahren, wie GPS, lässt sich dieser Ursprung aus geodätischen Beobachtungen realisieren. In einem konsistenten Ausgleichungsansatz werden Satellitenbahnen, Stationspositionen und die in Kugelflächenfunktionen niedrigen Grades modellierte Auflastdeformation gemeinsam geschätzt. Die Grundlage der Realisierung des ITRS bilden in einem gemeinsamen Projekt der TU Dresden, der TU München und des GFZ Potsdam reprozessierte Beobachtungen eines über 200 Stationen umfassenden globalen GPS-Netzes des Beobachtungszeitraums 1994 bis 2007. Nach der Vorstellung der Grundprinzipien des GPS und seiner wesentlichen Fehlereinflüsse erfolgt die Beschreibung der Analyse der Beobachtungsdaten selbst. Sie umfasst die einheitliche Auswertung über den gesamten Zeitraum sowie Verbesserungen in der Modellierung der atmosphärischen Einflüsse und der Charakteristika der Sende- und Empfangsantennen sowie die Nutzung der Normalgleichungen zu Realisierung des ITRS. Der abgeleitete Terrestrische Referenzrahmen (TRF) wird Potsdam-Dresden-Reprocessing 2007 (PDR07) genannt. Zur Beurteilung der Genauigkeit und Zuverlässigkeit dieses TRF werden umfangreiche Analysen durchgeführt. So wird der PDR07 u.a. mit weiteren Realisierungen des ITRS, dem ITRF2000, dem ITRF2005 und den Realisierungen des International GNSS Service (IGS) IGb00 und IGS05, verglichen. Für eine Vielzahl geodynamischer Anwendungen werden GPS-Stationen in Messkampagnen beobachtet. Die hochgenaue Realisierung des ITRS in diesen regionalen GPS-Netzen ist für die geodynamische Interpretation der Ergebnisse zwingend erforderlich. Am Beispiel eines regionalen GPS-Netzes in der Antarktis wird untersucht, wie sich das ITRS in derartigen Netzen realisieren lässt und mit welcher Genauigkeit lineare Stationsbewegungen aus Kampagnenmessungen abgeleitet werden können. Im Anschluss werden die erhaltenen Bewegungsraten geodynamisch interpretiert: Aus den horizontalen Bewegungsraten wird die Bewegung der Antarktischen Kontinentalplatte im Konzept der Globaltektonik bestimmt und ihre innere Stabilität bewertet. Die vertikalen Stationsbewegungen werden genutzt, um Aussagen über rezente Krustendeformationen aufgrund glazialisostatischer Ausgleichsbewegungen und rezenter Massenvariationen des antarktischen Eises zu treffen. / The geodetic observation techniques contribute in several ways to the research of the system Earth: On the one hand they observe the recent processes and their variations in time directly, on the other hand they provide the basis for a consistent description of all effects in a consistent geometrical and gravimetrical reference. Within the project Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) the prerequisites for the combination of geodetic observation techniques, models and analysis strategies shall be created in order to enable a high accurate monitoring of the system Earth with consistent geodetic parameters. In this context the realization of geodetic reference systems with highest accuracy is a central task of the GGOS and subject of this thesis. At present, a common realization of the Terrestrial Reference System (TRS) consists of station positions according to a specific epoch and their linear changes with time. In this concept non-linear station motions yield to residual variations, which may be used for geoscientific interpretations. The natural origin of a global TRS, and this is also the case for the International Terrestrial Reference System (ITRS), is the center of mass of the system Earth (CM). This origin can be realized by observations of dynamic satellite techniques, such as GPS. In a consistent approach satellite orbits, stations positions and the lower degrees of harmonic surface mass load coefficients are estimated simultaneously. The ITRS is realized based on reprocessed observations of a global GPS network. In a joint effort TU Dresden, TU München and GFZ Potsdam analyzed the data of more than 200 stations of the observation time span 1994 to 2007. After an introduction to the basic principles of GPS and its major error sources the data analysis is described. This covers a homogeneous analysis over the entire period, improvements in atmosphere modeling and antenna phase center modeling as well as the usage of normal equations for the ITRS realization. The determined Terrestrial Reference Frame (TRF) is named Potsdam-Dresden-Reprocessing 2007 (PDR07). In order to assess the accuracy and stability of this TRF a variety of analyses is performed. For example, PDR07 is compared to other ITRS realizations, such as the ITRF2000, the ITRF2005 as well as the realizations of the International GNSS Service (IGS) IGb00 and IGS05. GPS campaign observations are often used to investigate geodynamic phenomena. The realization of the ITRS with highest accuracy in these regional GPS networks is essential for the geodynamic interpretation of the results. A regional GPS network in Antarctica is used to investigate the optimal way to realize the ITRS in such networks and the accuracy of linear station rates determined from campaign observations. Subsequently, the station rates are used for geodynamic interpretations: The horizontal station rates are used to determine the movement of the Antarctic Plate in the concept of global plate kinematics and to assess the inner stability of the Antarctic Plate. The vertical station rates are used to evaluate recent crustal deformations caused by glacial isostatic adjustment and recent mass changes of the Antarctic ice sheet.
9

Análise metodológica do posicionamento relativo através do GNSS e suas aplicações na engenharia: uso da técnica RTK/GSM. / Relative positioning metodology analysis through GNSS and its applications in engineering: use of RTK/GSM technique.

Guandalini, Marcos 12 June 2012 (has links)
A utilização dos sistemas de navegação global por satélite, conhecidos pela sigla GNSS (Global Navigation Satellite System), cresceu vertiginosamente durante a última década. Atualmente, os receptores GNSS são ferramentas seguras, eficientes e altamente produtivas para a realização de observações aos satélites, possibilitando determinar coordenadas geodésicas sobre a superfície terrestre. As ferramentas e tecnologias disponíveis no mercado são de essencial importância no desenvolvimento eficiente dos projetos de engenharia. No entanto, o domínio das técnicas de trabalho e o conhecimento profundo de todos os métodos de execução são os principais obstáculos para a introdução de uma nova metodologia em projetos de engenharia. Este trabalho tem por objetivo esclarecer e testar a associação dessa tecnologia com o uso da telefonia celular, em especial com a utilização da conexão GSM (Global System for Mobile Communication) / GPRS (General Packet Radio Service), disponíveis no Brasil. O posicionamento preciso em tempo real tradicionalmente envia as observações de fase da onda portadora entre o receptor GNSS base e móvel através de frequências de rádio. Isso possibilita a determinação de coordenadas geodésicas e topográficas instantaneamente. Entretanto, obstáculos como áreas de relevo acidentado, edificações ou a baixa potência do rádio que envia os sinais fazem com que a comunicação entre os equipamentos seja interrompida com a perda frequente da solução instantânea. Apesar disso, este método de trabalho está consagrado como o mais produtivo, mantendo precisões topográficas, sendo que superar as restrições citadas seria uma inovação na área de Geodésia e Topografia. Com o avanço de tecnologias correlatas, criou-se uma nova maneira de enviar as observações de fase utilizando a conexão GSM através do pacote de dados GPRS. A conexão GSM é aplicada na tecnologia móvel padrão, que se tornou a mais popular para telefones celulares, de fácil acesso a qualquer usuário. Adequando o tradicional protocolo RTCM (Radio Technical Commission for Maritime Services) em um formato capaz de ser transmitido por GPRS, desenvolveu-se assim o serviço NTRIP (Network Transport of RTCM via Internet Protocol). Com esta nova concepção da conexão GSM/GPRS é possível realizar levantamentos com a técnica RTK (Real Time Kinematic) com vetores de até 100 km, mantendo as precisões atingidas com a metodologia atual de pós-processamento. Os tipos de equipamentos, os limites de distâncias e a qualidade dos dados obtidos estão sendo discutidos nesta pesquisa e analisados de forma a verificar os resultados atingidos em termos de precisão e acurácia. / The use of Global Navigation Satellite System has dramatically grown over the last decade. Currently, GNSS receivers are secure, efficient and highly productive for carrying out observations for the geodetic coordinates determination on the Earth\'s surface. The tools and technologies available on the market are essential in the establishment of engineering projects. However, the total knowledge of the techniques and the total domain of the execution methods are the first obstacles to the full incorporation of the technology in the engineering projects. This work is to clarify and to teste the technology described in this dissertation related to the facilities of cell phone coverage, particularly the GSM/GPRS connection able to be used in Brazil. The precise positioning in real-time traditionally involves the transmission of phase measurements between base and rover GNSS receivers; this is traditionally carried out through radio frequencies. This allows determining geodetic and topographic coordinates instantaneously. However, obstacles like accident topography terrain, buildings or low power of radio basis transmission, provoke constant interruptions in the communication among the radios and the consequent losing of the instant solution. Nevertheless, this methodology is the most productive for a centimetric accuracy; so the major challenge in geodetic positioning is to overcome the mentioned difficulties. With the high development of technologies related to mobile phone, a new way to transmit the observations using the GSM/GPRS connection was created. The GSM connection is a standard mobile technology, the most popular for cell phones, which became of easy access to any person. The traditional RTCM protocol in a convenient format can be transmitted by GSM/GPRS connection which is known as NTRIP service, becoming a full digital communication system. As of this new concept, it is possible to note vectors up to 100 km in RTK technique employment with the same high quality measurement. The equipment characteristics, distance limits and quality of the data recorded have been discussed and analyzed here in order to verify whether the results can achieve the necessary precision and accuracy.
10

Análise metodológica do posicionamento relativo através do GNSS e suas aplicações na engenharia: uso da técnica RTK/GSM. / Relative positioning metodology analysis through GNSS and its applications in engineering: use of RTK/GSM technique.

Marcos Guandalini 12 June 2012 (has links)
A utilização dos sistemas de navegação global por satélite, conhecidos pela sigla GNSS (Global Navigation Satellite System), cresceu vertiginosamente durante a última década. Atualmente, os receptores GNSS são ferramentas seguras, eficientes e altamente produtivas para a realização de observações aos satélites, possibilitando determinar coordenadas geodésicas sobre a superfície terrestre. As ferramentas e tecnologias disponíveis no mercado são de essencial importância no desenvolvimento eficiente dos projetos de engenharia. No entanto, o domínio das técnicas de trabalho e o conhecimento profundo de todos os métodos de execução são os principais obstáculos para a introdução de uma nova metodologia em projetos de engenharia. Este trabalho tem por objetivo esclarecer e testar a associação dessa tecnologia com o uso da telefonia celular, em especial com a utilização da conexão GSM (Global System for Mobile Communication) / GPRS (General Packet Radio Service), disponíveis no Brasil. O posicionamento preciso em tempo real tradicionalmente envia as observações de fase da onda portadora entre o receptor GNSS base e móvel através de frequências de rádio. Isso possibilita a determinação de coordenadas geodésicas e topográficas instantaneamente. Entretanto, obstáculos como áreas de relevo acidentado, edificações ou a baixa potência do rádio que envia os sinais fazem com que a comunicação entre os equipamentos seja interrompida com a perda frequente da solução instantânea. Apesar disso, este método de trabalho está consagrado como o mais produtivo, mantendo precisões topográficas, sendo que superar as restrições citadas seria uma inovação na área de Geodésia e Topografia. Com o avanço de tecnologias correlatas, criou-se uma nova maneira de enviar as observações de fase utilizando a conexão GSM através do pacote de dados GPRS. A conexão GSM é aplicada na tecnologia móvel padrão, que se tornou a mais popular para telefones celulares, de fácil acesso a qualquer usuário. Adequando o tradicional protocolo RTCM (Radio Technical Commission for Maritime Services) em um formato capaz de ser transmitido por GPRS, desenvolveu-se assim o serviço NTRIP (Network Transport of RTCM via Internet Protocol). Com esta nova concepção da conexão GSM/GPRS é possível realizar levantamentos com a técnica RTK (Real Time Kinematic) com vetores de até 100 km, mantendo as precisões atingidas com a metodologia atual de pós-processamento. Os tipos de equipamentos, os limites de distâncias e a qualidade dos dados obtidos estão sendo discutidos nesta pesquisa e analisados de forma a verificar os resultados atingidos em termos de precisão e acurácia. / The use of Global Navigation Satellite System has dramatically grown over the last decade. Currently, GNSS receivers are secure, efficient and highly productive for carrying out observations for the geodetic coordinates determination on the Earth\'s surface. The tools and technologies available on the market are essential in the establishment of engineering projects. However, the total knowledge of the techniques and the total domain of the execution methods are the first obstacles to the full incorporation of the technology in the engineering projects. This work is to clarify and to teste the technology described in this dissertation related to the facilities of cell phone coverage, particularly the GSM/GPRS connection able to be used in Brazil. The precise positioning in real-time traditionally involves the transmission of phase measurements between base and rover GNSS receivers; this is traditionally carried out through radio frequencies. This allows determining geodetic and topographic coordinates instantaneously. However, obstacles like accident topography terrain, buildings or low power of radio basis transmission, provoke constant interruptions in the communication among the radios and the consequent losing of the instant solution. Nevertheless, this methodology is the most productive for a centimetric accuracy; so the major challenge in geodetic positioning is to overcome the mentioned difficulties. With the high development of technologies related to mobile phone, a new way to transmit the observations using the GSM/GPRS connection was created. The GSM connection is a standard mobile technology, the most popular for cell phones, which became of easy access to any person. The traditional RTCM protocol in a convenient format can be transmitted by GSM/GPRS connection which is known as NTRIP service, becoming a full digital communication system. As of this new concept, it is possible to note vectors up to 100 km in RTK technique employment with the same high quality measurement. The equipment characteristics, distance limits and quality of the data recorded have been discussed and analyzed here in order to verify whether the results can achieve the necessary precision and accuracy.

Page generated in 0.0604 seconds