• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zur Realisierung eines terrestrischen Referenzsystems in globalen und regionalen GPS-Netzen

Rülke, Axel 27 September 2009 (has links) (PDF)
Die geodätischen Beobachtungsverfahren leisten auf verschiedene Weise Beiträge zur Erforschung des Systems Erde: Einerseits beobachten sie die rezenten Prozesse und ihre zeitlichen Variationen direkt, andererseit liefert sie die Grundlage für die konsistente Betrachtung aller Einflüsse in einem einheitlichen geometrischen und gravimetrischen Bezug. Das Projekt des Global Geodetic Observing System (GGOS) der Internationalen Assoziation für Geodäsie (IAG) soll die Voraussetzungen zur Vereinigung der verschiedenen geodätischen Beobachtungsverfahren, Modelle und Auswertemethoden mit dem Ziel schaffen, mit einem konsistenten Satz geodätischer Parameter ein hochgenaues Monitoring des Systems Erde zu ermöglichen. Die Realisierung geodätischer Bezugssysteme mit höchsten Genauigkeitsansprüchen ist in diesem Kontext eine zentrale Aufgabe des GGOS und Thema der vorliegenden Arbeit. In der derzeit üblichen Darstellung umfasst eine Realisierung des Terrestrischen Referenzsystems (TRS) Stationspositionen zu einer spezifischen Epoche und ihre linearen Änderungen mit der Zeit. In diesem Konzept führen alle nichtlinearen Stationsbewegungen zu residualen Abweichungen, die geowissenschaftlich interpretiert werden können. Der natürliche Ursprung eines globalen TRS, so auch des International Terrestrial Reference System (ITRS), liegt im Massezentrum des Systems Erde (CM). Mit Hilfe dynamischer Satellitenverfahren, wie GPS, lässt sich dieser Ursprung aus geodätischen Beobachtungen realisieren. In einem konsistenten Ausgleichungsansatz werden Satellitenbahnen, Stationspositionen und die in Kugelflächenfunktionen niedrigen Grades modellierte Auflastdeformation gemeinsam geschätzt. Die Grundlage der Realisierung des ITRS bilden in einem gemeinsamen Projekt der TU Dresden, der TU München und des GFZ Potsdam reprozessierte Beobachtungen eines über 200 Stationen umfassenden globalen GPS-Netzes des Beobachtungszeitraums 1994 bis 2007. Nach der Vorstellung der Grundprinzipien des GPS und seiner wesentlichen Fehlereinflüsse erfolgt die Beschreibung der Analyse der Beobachtungsdaten selbst. Sie umfasst die einheitliche Auswertung über den gesamten Zeitraum sowie Verbesserungen in der Modellierung der atmosphärischen Einflüsse und der Charakteristika der Sende- und Empfangsantennen sowie die Nutzung der Normalgleichungen zu Realisierung des ITRS. Der abgeleitete Terrestrische Referenzrahmen (TRF) wird Potsdam-Dresden-Reprocessing 2007 (PDR07) genannt. Zur Beurteilung der Genauigkeit und Zuverlässigkeit dieses TRF werden umfangreiche Analysen durchgeführt. So wird der PDR07 u.a. mit weiteren Realisierungen des ITRS, dem ITRF2000, dem ITRF2005 und den Realisierungen des International GNSS Service (IGS) IGb00 und IGS05, verglichen. Für eine Vielzahl geodynamischer Anwendungen werden GPS-Stationen in Messkampagnen beobachtet. Die hochgenaue Realisierung des ITRS in diesen regionalen GPS-Netzen ist für die geodynamische Interpretation der Ergebnisse zwingend erforderlich. Am Beispiel eines regionalen GPS-Netzes in der Antarktis wird untersucht, wie sich das ITRS in derartigen Netzen realisieren lässt und mit welcher Genauigkeit lineare Stationsbewegungen aus Kampagnenmessungen abgeleitet werden können. Im Anschluss werden die erhaltenen Bewegungsraten geodynamisch interpretiert: Aus den horizontalen Bewegungsraten wird die Bewegung der Antarktischen Kontinentalplatte im Konzept der Globaltektonik bestimmt und ihre innere Stabilität bewertet. Die vertikalen Stationsbewegungen werden genutzt, um Aussagen über rezente Krustendeformationen aufgrund glazialisostatischer Ausgleichsbewegungen und rezenter Massenvariationen des antarktischen Eises zu treffen. / The geodetic observation techniques contribute in several ways to the research of the system Earth: On the one hand they observe the recent processes and their variations in time directly, on the other hand they provide the basis for a consistent description of all effects in a consistent geometrical and gravimetrical reference. Within the project Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) the prerequisites for the combination of geodetic observation techniques, models and analysis strategies shall be created in order to enable a high accurate monitoring of the system Earth with consistent geodetic parameters. In this context the realization of geodetic reference systems with highest accuracy is a central task of the GGOS and subject of this thesis. At present, a common realization of the Terrestrial Reference System (TRS) consists of station positions according to a specific epoch and their linear changes with time. In this concept non-linear station motions yield to residual variations, which may be used for geoscientific interpretations. The natural origin of a global TRS, and this is also the case for the International Terrestrial Reference System (ITRS), is the center of mass of the system Earth (CM). This origin can be realized by observations of dynamic satellite techniques, such as GPS. In a consistent approach satellite orbits, stations positions and the lower degrees of harmonic surface mass load coefficients are estimated simultaneously. The ITRS is realized based on reprocessed observations of a global GPS network. In a joint effort TU Dresden, TU München and GFZ Potsdam analyzed the data of more than 200 stations of the observation time span 1994 to 2007. After an introduction to the basic principles of GPS and its major error sources the data analysis is described. This covers a homogeneous analysis over the entire period, improvements in atmosphere modeling and antenna phase center modeling as well as the usage of normal equations for the ITRS realization. The determined Terrestrial Reference Frame (TRF) is named Potsdam-Dresden-Reprocessing 2007 (PDR07). In order to assess the accuracy and stability of this TRF a variety of analyses is performed. For example, PDR07 is compared to other ITRS realizations, such as the ITRF2000, the ITRF2005 as well as the realizations of the International GNSS Service (IGS) IGb00 and IGS05. GPS campaign observations are often used to investigate geodynamic phenomena. The realization of the ITRS with highest accuracy in these regional GPS networks is essential for the geodynamic interpretation of the results. A regional GPS network in Antarctica is used to investigate the optimal way to realize the ITRS in such networks and the accuracy of linear station rates determined from campaign observations. Subsequently, the station rates are used for geodynamic interpretations: The horizontal station rates are used to determine the movement of the Antarctic Plate in the concept of global plate kinematics and to assess the inner stability of the Antarctic Plate. The vertical station rates are used to evaluate recent crustal deformations caused by glacial isostatic adjustment and recent mass changes of the Antarctic ice sheet.
2

Zur Realisierung eines terrestrischen Referenzsystems in globalen und regionalen GPS-Netzen

Rülke, Axel 10 July 2009 (has links)
Die geodätischen Beobachtungsverfahren leisten auf verschiedene Weise Beiträge zur Erforschung des Systems Erde: Einerseits beobachten sie die rezenten Prozesse und ihre zeitlichen Variationen direkt, andererseit liefert sie die Grundlage für die konsistente Betrachtung aller Einflüsse in einem einheitlichen geometrischen und gravimetrischen Bezug. Das Projekt des Global Geodetic Observing System (GGOS) der Internationalen Assoziation für Geodäsie (IAG) soll die Voraussetzungen zur Vereinigung der verschiedenen geodätischen Beobachtungsverfahren, Modelle und Auswertemethoden mit dem Ziel schaffen, mit einem konsistenten Satz geodätischer Parameter ein hochgenaues Monitoring des Systems Erde zu ermöglichen. Die Realisierung geodätischer Bezugssysteme mit höchsten Genauigkeitsansprüchen ist in diesem Kontext eine zentrale Aufgabe des GGOS und Thema der vorliegenden Arbeit. In der derzeit üblichen Darstellung umfasst eine Realisierung des Terrestrischen Referenzsystems (TRS) Stationspositionen zu einer spezifischen Epoche und ihre linearen Änderungen mit der Zeit. In diesem Konzept führen alle nichtlinearen Stationsbewegungen zu residualen Abweichungen, die geowissenschaftlich interpretiert werden können. Der natürliche Ursprung eines globalen TRS, so auch des International Terrestrial Reference System (ITRS), liegt im Massezentrum des Systems Erde (CM). Mit Hilfe dynamischer Satellitenverfahren, wie GPS, lässt sich dieser Ursprung aus geodätischen Beobachtungen realisieren. In einem konsistenten Ausgleichungsansatz werden Satellitenbahnen, Stationspositionen und die in Kugelflächenfunktionen niedrigen Grades modellierte Auflastdeformation gemeinsam geschätzt. Die Grundlage der Realisierung des ITRS bilden in einem gemeinsamen Projekt der TU Dresden, der TU München und des GFZ Potsdam reprozessierte Beobachtungen eines über 200 Stationen umfassenden globalen GPS-Netzes des Beobachtungszeitraums 1994 bis 2007. Nach der Vorstellung der Grundprinzipien des GPS und seiner wesentlichen Fehlereinflüsse erfolgt die Beschreibung der Analyse der Beobachtungsdaten selbst. Sie umfasst die einheitliche Auswertung über den gesamten Zeitraum sowie Verbesserungen in der Modellierung der atmosphärischen Einflüsse und der Charakteristika der Sende- und Empfangsantennen sowie die Nutzung der Normalgleichungen zu Realisierung des ITRS. Der abgeleitete Terrestrische Referenzrahmen (TRF) wird Potsdam-Dresden-Reprocessing 2007 (PDR07) genannt. Zur Beurteilung der Genauigkeit und Zuverlässigkeit dieses TRF werden umfangreiche Analysen durchgeführt. So wird der PDR07 u.a. mit weiteren Realisierungen des ITRS, dem ITRF2000, dem ITRF2005 und den Realisierungen des International GNSS Service (IGS) IGb00 und IGS05, verglichen. Für eine Vielzahl geodynamischer Anwendungen werden GPS-Stationen in Messkampagnen beobachtet. Die hochgenaue Realisierung des ITRS in diesen regionalen GPS-Netzen ist für die geodynamische Interpretation der Ergebnisse zwingend erforderlich. Am Beispiel eines regionalen GPS-Netzes in der Antarktis wird untersucht, wie sich das ITRS in derartigen Netzen realisieren lässt und mit welcher Genauigkeit lineare Stationsbewegungen aus Kampagnenmessungen abgeleitet werden können. Im Anschluss werden die erhaltenen Bewegungsraten geodynamisch interpretiert: Aus den horizontalen Bewegungsraten wird die Bewegung der Antarktischen Kontinentalplatte im Konzept der Globaltektonik bestimmt und ihre innere Stabilität bewertet. Die vertikalen Stationsbewegungen werden genutzt, um Aussagen über rezente Krustendeformationen aufgrund glazialisostatischer Ausgleichsbewegungen und rezenter Massenvariationen des antarktischen Eises zu treffen. / The geodetic observation techniques contribute in several ways to the research of the system Earth: On the one hand they observe the recent processes and their variations in time directly, on the other hand they provide the basis for a consistent description of all effects in a consistent geometrical and gravimetrical reference. Within the project Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) the prerequisites for the combination of geodetic observation techniques, models and analysis strategies shall be created in order to enable a high accurate monitoring of the system Earth with consistent geodetic parameters. In this context the realization of geodetic reference systems with highest accuracy is a central task of the GGOS and subject of this thesis. At present, a common realization of the Terrestrial Reference System (TRS) consists of station positions according to a specific epoch and their linear changes with time. In this concept non-linear station motions yield to residual variations, which may be used for geoscientific interpretations. The natural origin of a global TRS, and this is also the case for the International Terrestrial Reference System (ITRS), is the center of mass of the system Earth (CM). This origin can be realized by observations of dynamic satellite techniques, such as GPS. In a consistent approach satellite orbits, stations positions and the lower degrees of harmonic surface mass load coefficients are estimated simultaneously. The ITRS is realized based on reprocessed observations of a global GPS network. In a joint effort TU Dresden, TU München and GFZ Potsdam analyzed the data of more than 200 stations of the observation time span 1994 to 2007. After an introduction to the basic principles of GPS and its major error sources the data analysis is described. This covers a homogeneous analysis over the entire period, improvements in atmosphere modeling and antenna phase center modeling as well as the usage of normal equations for the ITRS realization. The determined Terrestrial Reference Frame (TRF) is named Potsdam-Dresden-Reprocessing 2007 (PDR07). In order to assess the accuracy and stability of this TRF a variety of analyses is performed. For example, PDR07 is compared to other ITRS realizations, such as the ITRF2000, the ITRF2005 as well as the realizations of the International GNSS Service (IGS) IGb00 and IGS05. GPS campaign observations are often used to investigate geodynamic phenomena. The realization of the ITRS with highest accuracy in these regional GPS networks is essential for the geodynamic interpretation of the results. A regional GPS network in Antarctica is used to investigate the optimal way to realize the ITRS in such networks and the accuracy of linear station rates determined from campaign observations. Subsequently, the station rates are used for geodynamic interpretations: The horizontal station rates are used to determine the movement of the Antarctic Plate in the concept of global plate kinematics and to assess the inner stability of the Antarctic Plate. The vertical station rates are used to evaluate recent crustal deformations caused by glacial isostatic adjustment and recent mass changes of the Antarctic ice sheet.
3

Zur Ermittlung geophysikalischer Massensignale mit Schwerefeldmissionen: Eine Analyse des gegenwärtigen Standes am Beispiel der Antarktis

Horwath, Martin 22 February 2008 (has links) (PDF)
Die neuen Schwerefeld-Satellitenmissionen CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) und GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) können wesentlich zur Erforschung und Beobachtung des Systems Erde beitragen. Die Antarktis als ein Schlüsselglied im globalen Klimasystem bietet dabei besondere Herausforderungen. GRACE hat hier das Potential, zeitliche Massenänderungen (unter anderem der Eismasse) zu beobachten. Methoden zur Auswertung der Missionsdaten befinden sich gegenwärtig in einem intensiven Entwicklungsprozess, zu dem die vorliegende Arbeit beitragen soll. Inhaltlicher Schwerpunkt ist die Nutzung von GRACE zur Ermittlung zeitlicher Massenvariationen in der Antarktis. Die Analysen erfolgen in erster Linie aus der Position eines Nutzers von Standard-Missionsprodukten, betreffen aber grundsätzlich den gesamten Auswerteprozess. Nach einer Einführung werden zunächst die Hintergründe der Arbeit ausgeführt (Kapitel 2), speziell die theoretischen Grundlagen zu Massen- und Schwerefeldvariationen, Phänomene geophysikalischer Massenvariationen und die neuen Schwerefeldmissionen mit ihrem Potential zur Beobachtung solcher Massenvariationen. Ein Hauptteil der Arbeit behandelt die Frage, welche Signale und Fehler in den Schwerefeldlösungen der Missionen enthalten sind (Kapitel 3). Zunächst werden dazu gegenwärtige Prozessierungskonzepte zur Erstellung von CHAMP- und GRACE-Schwerefeldlösungen skizziert und die GRACE-Monatslösungen des GeoForschungsZentrums Potsdam als ein Standard-GRACE-Produkt vorgestellt. Es folgen verschiedene Analysen zur Fehlerstruktur der Schwerefeldlösungen, wobei insbesondere die Fehlerstruktur von GRACE-Monatslösungen anhand ihres Zeitverhaltens empirisch untersucht werden. Als eine Ursache empirisch festgestellter, aber durch Fehlermodelle nicht vollständig beschriebener Fehlerstrukturen werden schließlich Alias-Effekte von unmodellierten zeitlichen Variationen auf die geschätzten räumlichen Variationen qualitativ und quantitativ beschrieben und diskutiert. Ein zweiter Hauptteil untersucht geophysikalische Rückschlüsse aus GRACE-Schwerefeldlösungen mit Anwendung auf die Schätzung antarktischer Eismassensignale (Kapitel 4). Methoden zur Schätzung von Massensignalen aus den Schwerefeldlösungen werden systematisch zusammengestellt und teilweise weiterentwickelt. Die praktische Anwendung dieser Methoden zur Schätzung von Eismassenänderungen des Antarktischen Eisschildes und seiner großen Eiseinzugsgebiete wird erklärt. Ein Schwerpunkt liegt auf der Untersuchung der unterschiedlichen Mechanismen, die zu Fehlern der geschätzten Massensignale führen, sowie auf der Abschätzung dieser Fehler. Im Lichte der gewonnenen Einsichten in die methodischen Unsicherheiten der angewandten Analysetechniken erfolgt schließlich die Präsentation und Diskussion der Ergebnisse, einschließlich eines Vergleichs mit bisher veröffentlichten Massenbilanzresultaten. Möglichkeiten zu methodischen Verbesserungen, die in den vorangegangenen Untersuchungen deutlich werden, aber über den Rahmen der Arbeit hinausgehen, werden in einem eigenen Kapitel (Kapitel 5) diskutiert. Dies betrifft sowohl solche Verbesserungen, die bereits auf der Basis der gegenwärtigen GRACE-Monatslösungen möglich sind, als auch Verbesserungen in der Generierung dieser Monatslösungen oder, allgemeiner, in der GRACE-Prozessierung. Die Kombination der GRACE-Daten mit komplementären Beobachtungen und Modellen spielt in den unterschiedlichen Stadien der GRACE-Datenanalyse eine Schlüsselrolle. In Bezug auf die Trennung antarktischer Massensignale werden Kombinationsstrategien nochmals gesondert diskutiert. Schließlich werden die Hauptergebnisse der Arbeit nochmals zusammengefasst und eingeordnet (Kapitel 6). / The new gravity field satellite missions CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) can provide essential contributions to the study and the monitoring of the Earth system. Hereby, Antarctica as a key element of the climate system offers particular challenges. GRACE has the potential to observe temporal variations of masses such as ice masses, in particular. Methods to analyse the mission data are currently in a process of intensive development. The present work aims to contribute to this process. The focus is on the use of GRACE to determine temporal mass variations in Antarctica. The analyses are carried out from the viewpoint of a standard product user. Nonetheless, they concern the entire process of GRACE data analysis. After an introduction, the background of the work is explained, in particular the theoretical fundamentals of mass and gravity field variations, the phenomena of geophysical mass variations and the new gravity field missions with their potential to observe these variations (chapter 2). One main part of the work (chapter 3) treats the question which signals and errors are contained in the missions' gravity field solutions (chapter 3). Current CHAMP and GRACE processing approaches are outlined. The GRACE monthly solutions by GeoForschungsZentrum Potsdam are introduced. Subsequently, different analyses about error structures of gravity field mission solutions are presented. In particular, an empirical analysis of time-variations of the GRACE monthly solutions reveals error structures which are not completely described by error models. As one cause of this discrepancy, alias effects of unmodelled temporal variations on the spatial patterns of the solutions are discussed qualitatively and quantitatively. Another main part of the work (chapter 4) investigates geophysical inferences from the GRACE monthly solutions, with Antarctica taken as a case study. Methods to estimate mass signals are systematised and partly enhanced. The practical applications of these methods for the estimation of Antarctic ice mass changes is explained. The different error mechanisms are investigated in detail, and corresponding errors are assessed. The results about Antarctic ice mass changes are then presented, compared to previous results and discussed in the light of the remaining methodological uncertainties. The studies reveal directions for methodological improvements, and so, related ideas are discussed in a separate chapter (chapter 5). They concern both the analysis of current GRACE monthly solutions and the generation of these solutions, or, more generally, the GRACE processing. The combination of GRACE data with complementary observations and models plays a key role in the different levels of GRACE data analysis. Combination strategies are, hence, once more discussed with regard to Antarctic mass signals. Finally, the main results of the work are summarised and discussed in a broader context.
4

Zur Ermittlung geophysikalischer Massensignale mit Schwerefeldmissionen: Eine Analyse des gegenwärtigen Standes am Beispiel der Antarktis

Horwath, Martin 20 December 2007 (has links)
Die neuen Schwerefeld-Satellitenmissionen CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) und GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) können wesentlich zur Erforschung und Beobachtung des Systems Erde beitragen. Die Antarktis als ein Schlüsselglied im globalen Klimasystem bietet dabei besondere Herausforderungen. GRACE hat hier das Potential, zeitliche Massenänderungen (unter anderem der Eismasse) zu beobachten. Methoden zur Auswertung der Missionsdaten befinden sich gegenwärtig in einem intensiven Entwicklungsprozess, zu dem die vorliegende Arbeit beitragen soll. Inhaltlicher Schwerpunkt ist die Nutzung von GRACE zur Ermittlung zeitlicher Massenvariationen in der Antarktis. Die Analysen erfolgen in erster Linie aus der Position eines Nutzers von Standard-Missionsprodukten, betreffen aber grundsätzlich den gesamten Auswerteprozess. Nach einer Einführung werden zunächst die Hintergründe der Arbeit ausgeführt (Kapitel 2), speziell die theoretischen Grundlagen zu Massen- und Schwerefeldvariationen, Phänomene geophysikalischer Massenvariationen und die neuen Schwerefeldmissionen mit ihrem Potential zur Beobachtung solcher Massenvariationen. Ein Hauptteil der Arbeit behandelt die Frage, welche Signale und Fehler in den Schwerefeldlösungen der Missionen enthalten sind (Kapitel 3). Zunächst werden dazu gegenwärtige Prozessierungskonzepte zur Erstellung von CHAMP- und GRACE-Schwerefeldlösungen skizziert und die GRACE-Monatslösungen des GeoForschungsZentrums Potsdam als ein Standard-GRACE-Produkt vorgestellt. Es folgen verschiedene Analysen zur Fehlerstruktur der Schwerefeldlösungen, wobei insbesondere die Fehlerstruktur von GRACE-Monatslösungen anhand ihres Zeitverhaltens empirisch untersucht werden. Als eine Ursache empirisch festgestellter, aber durch Fehlermodelle nicht vollständig beschriebener Fehlerstrukturen werden schließlich Alias-Effekte von unmodellierten zeitlichen Variationen auf die geschätzten räumlichen Variationen qualitativ und quantitativ beschrieben und diskutiert. Ein zweiter Hauptteil untersucht geophysikalische Rückschlüsse aus GRACE-Schwerefeldlösungen mit Anwendung auf die Schätzung antarktischer Eismassensignale (Kapitel 4). Methoden zur Schätzung von Massensignalen aus den Schwerefeldlösungen werden systematisch zusammengestellt und teilweise weiterentwickelt. Die praktische Anwendung dieser Methoden zur Schätzung von Eismassenänderungen des Antarktischen Eisschildes und seiner großen Eiseinzugsgebiete wird erklärt. Ein Schwerpunkt liegt auf der Untersuchung der unterschiedlichen Mechanismen, die zu Fehlern der geschätzten Massensignale führen, sowie auf der Abschätzung dieser Fehler. Im Lichte der gewonnenen Einsichten in die methodischen Unsicherheiten der angewandten Analysetechniken erfolgt schließlich die Präsentation und Diskussion der Ergebnisse, einschließlich eines Vergleichs mit bisher veröffentlichten Massenbilanzresultaten. Möglichkeiten zu methodischen Verbesserungen, die in den vorangegangenen Untersuchungen deutlich werden, aber über den Rahmen der Arbeit hinausgehen, werden in einem eigenen Kapitel (Kapitel 5) diskutiert. Dies betrifft sowohl solche Verbesserungen, die bereits auf der Basis der gegenwärtigen GRACE-Monatslösungen möglich sind, als auch Verbesserungen in der Generierung dieser Monatslösungen oder, allgemeiner, in der GRACE-Prozessierung. Die Kombination der GRACE-Daten mit komplementären Beobachtungen und Modellen spielt in den unterschiedlichen Stadien der GRACE-Datenanalyse eine Schlüsselrolle. In Bezug auf die Trennung antarktischer Massensignale werden Kombinationsstrategien nochmals gesondert diskutiert. Schließlich werden die Hauptergebnisse der Arbeit nochmals zusammengefasst und eingeordnet (Kapitel 6). / The new gravity field satellite missions CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) can provide essential contributions to the study and the monitoring of the Earth system. Hereby, Antarctica as a key element of the climate system offers particular challenges. GRACE has the potential to observe temporal variations of masses such as ice masses, in particular. Methods to analyse the mission data are currently in a process of intensive development. The present work aims to contribute to this process. The focus is on the use of GRACE to determine temporal mass variations in Antarctica. The analyses are carried out from the viewpoint of a standard product user. Nonetheless, they concern the entire process of GRACE data analysis. After an introduction, the background of the work is explained, in particular the theoretical fundamentals of mass and gravity field variations, the phenomena of geophysical mass variations and the new gravity field missions with their potential to observe these variations (chapter 2). One main part of the work (chapter 3) treats the question which signals and errors are contained in the missions' gravity field solutions (chapter 3). Current CHAMP and GRACE processing approaches are outlined. The GRACE monthly solutions by GeoForschungsZentrum Potsdam are introduced. Subsequently, different analyses about error structures of gravity field mission solutions are presented. In particular, an empirical analysis of time-variations of the GRACE monthly solutions reveals error structures which are not completely described by error models. As one cause of this discrepancy, alias effects of unmodelled temporal variations on the spatial patterns of the solutions are discussed qualitatively and quantitatively. Another main part of the work (chapter 4) investigates geophysical inferences from the GRACE monthly solutions, with Antarctica taken as a case study. Methods to estimate mass signals are systematised and partly enhanced. The practical applications of these methods for the estimation of Antarctic ice mass changes is explained. The different error mechanisms are investigated in detail, and corresponding errors are assessed. The results about Antarctic ice mass changes are then presented, compared to previous results and discussed in the light of the remaining methodological uncertainties. The studies reveal directions for methodological improvements, and so, related ideas are discussed in a separate chapter (chapter 5). They concern both the analysis of current GRACE monthly solutions and the generation of these solutions, or, more generally, the GRACE processing. The combination of GRACE data with complementary observations and models plays a key role in the different levels of GRACE data analysis. Combination strategies are, hence, once more discussed with regard to Antarctic mass signals. Finally, the main results of the work are summarised and discussed in a broader context.
5

On the quantification of ice sheet mass changes and glacial isostatic adjustment effects by combining satellite data

Willen, Matthias Oskar 06 March 2023 (has links)
The satellite gravimetry mission Gravity Record And Climate Experiment (GRACE), which was operational from 2002 to 2017, and its follow-on mission GRACE-Follow-On (GRACE-FO), which has been active since 2018, revolutionized the observation of temporal changes of the Earth's gravitational field. The measurement data from these missions enable the nuanced quantification of mass redistributions on Earth. Water redistributions between continents and oceans caused by climate change are of particular research interest because of their relevance for mankind. These are, for example, the ice mass changes (IMC) of the ice sheets in Antarctica and Greenland, which this work focuses on. IMC estimates derived from satellite gravimetry data, like from other quantification methods, confirm that both the Greenland Ice Sheet (GIS) and the Antarctic Ice Sheet (AIS) have been losing mass over the last two decades. However, these estimates are subject to large uncertainties, which is particularly the case for the AIS. If the mass balance is obtained from gravimetric observations, a major source of uncertainty is the consideration of effects due to glacial isostatic adjustment (GIA). The uncertainty of the present-day gravitational field changes caused by the isostatic adjustment of the solid Earth to IMC during the last centuries and millennia propagates into estimates of the recent IMC. According to results of the Ice sheet Mass Balance Inter-comparison Exercise (IMBIE), the spread of different modelling results predicting the GIA-induced mass effect in Antarctica is almost as large as the estimated rate of the IMC itself. In Greenland, the spread of the mass effect from different GIA modelling results is approximately 20 % of the rate of IMC. Alternatively, the IMC can be determined using surface elevation changes derived from satellite altimetry observations. In this case, any GIA error hardly affects the results, but there is a significant source of uncertainty in the conversion of volume changes into mass changes. It is possible to combine data from satellite gravimetry and satellite altimetry to jointly estimate IMC and GIA mass effects, e.g. by solving an inverse problem (joint data inversion). This is an alternative to the use of GIA modelling results in processing satellite gravimetry data. Results from data combination methods are not only a means to an end to improve the estimation of IMC. They also can contribute to answer geodynamic questions. However, previous estimation strategies for combining satellite gravimetry and satellite altimetry data are subject to some limitations. Many approaches only allow to estimate GIA in a regional framework and not in global framework. Other approaches strongly depend on a priori information from geophysical modelling which are subject to large uncertainties. Furthermore, limitations are due to processing choices, e.g. the use of deterministic parameters over defined time intervals or, e.g. due to the consideration of errors in the applied data sets. This work investigates advancements of data combination methods that allow to quantify IMC and present-day GIA effects. Specifically, the approaches investigated here combine measured gravitational field changes from satellite gravimetry, measured surface elevation changes from satellite altimetry, modelled surface mass balances from regional climate modelling, and modelled firn thickness changes from firn modelling. This cumulative dissertation comprises three publications that investigated three aspects of data combination approaches. The first publication analysed a regional combination approach in Antarctica and results therein demonstrated a significant dependence of the estimated GIA effect on the input data sets and applied processing choices. A bias correction can significantly reduce an initial bias in the determined GIA effect associated to the spherical harmonic coefficients of degree-1 and c₂₀. However, this bias correction regionally constrains the GIA estimate and prevents to implement such an approach in a global framework. The second publication infers long-term mass trends with their temporal changes jointly observed from satellite gravimetry and satellite altimetry data. To do so, a state-space filtering framework was applied to the data sets allowing to estimate temporal changes of the parameters over time while accounting for temporal correlation of short-term fluctuations. Thereby, an accelerating ice-dynamically induced ice mass loss is found for drainage basins in West Antarctica. In contrast, the temporal variability of long-term trends in East Antarctica is low. Noteworthy, the trends in Dronning Maud Land and Enderby Land are positive. The third publication presents a global approach to jointly estimate IMC, GIA effects and firn thickness changes, while accounting for spatial error covariances of the input data sets. The intention of the utilized GIA parametrization in Antarctica is to spatially resolve GIA effects that were not predicted by GIA models. Simulation experiments demonstrated the feasibility of the approach under the presence of realistic limitations of satellite observations and model products. This framework paper also reports a first application of the inversion method of Publication~3 to real data. The focus of this application is on Antarctcia over the time interval January 2011 to December 2020. Results for the AIS are: (i) an IMC of (−150 ± 5) Gt a⁻¹, (ii) a change of the firn air content of (40 ± 5) km³ a⁻¹, and (iii) an integrated GIA-induced mass effect of (72 ± 4) Gt a⁻¹. These results are promising with regard to the application of this methodology, as they are similar to previously published estimates. But they are estimated in a globally consistent framework and without applying conventional filtering strategies. Future work should further improve the methodology and eventually implement it in a global inversion framework that allows to jointly estimate all sea-level contributions.:1 Introduction 2 Processes over ice sheets inducing changes in Earth’s gravity and geometry 3 Data sets 4 Data combinations over ice sheets 5 Publications 6 Inversion of real data for glacial isostatic adjustment and ice mass changes in Antarctica 7 Outlook 8 Conclusions / Die Satellitengravimetriemission Gravity Record And Climate Experiment (GRACE), die von 2002 bis 2017 aktiv war, sowie die seit 2018 aktive Nachfolgemission GRACE-Follow-On (GRACE-FO) revolutionierten die Beobachtung zeitlicher Änderungen des Gravitationsfeldes der Erde. Die Messdaten dieser Missionen ermöglichen die differenzierte Quantifizierung von Massenumverteilungen auf der Erde. Von besonderen Forschungsinteresse, aufgrund ihrer Relevanz für die Menschheit, sind dabei durch den Klimawandel verursachte Umverteilungen von Wasser zwischen den Kontinenten und dem Ozean. Das sind beispielsweise die Eismassenänderungen der Eisschilde in Antarktika sowie Grönland, die im Fokus dieser Arbeit stehen. Aus Messdaten der Satellitengravimetrie ermittelte Eismassenänderungen bestätigen, wie auch andere Quantifizierungsmethoden, dass der Grönländische Eisschild sowie der Antarktische Eisschild während der letzten zwei Jahrzehnte an Masse verloren haben. Allerdings sind diese Schätzungen mit großen Unsicherheiten behaftet, was insbesondere auf den Antarktischen Eisschild zutrifft. Wird die Massenbilanz mit gravimetrischen Beobachtungen ermittelt, ist eine wesentliche Quelle für die Unsicherheit die Berücksichtigung der Effekte aufgrund des glazial-isostatischen Ausgleichs (GIA). Die Unsicherheit über die gegenwärtigen Änderungen des Gravitationsfeldes, aufgrund des isostatischen Ausgleichs der festen Erde an Eismassenänderungen während der letzten Jahrhunderte und Jahrtausende, pflanzt sich in die Schätzung rezenter Massenänderungen fort. Laut Ergebnissen von vergleichenden Untersuchungen zu Eisschildmassenbilanzen (Ice sheet Mass Balance Inter-comparison Exercise, IMBIE) ist in Antarktika die Bandbreite unterschiedlicher Modellierungen des GIA-induzierten Masseneffekts fast so groß wie die ermittelte Rate der Eismassenänderung selbst. In Grönland beträgt die Bandbreite des Masseneffekts unterschiedlicher GIA-Modellierungen ungefähr 20 % der Eismassenänderungsrate. Alternativ lassen sich die Eismassenänderungen mittels Oberflächenhöhenänderungen bestimmen, die aus Beobachtungen der Satellitenaltimetrie abgeleitet werden. Dabei beeinflussen GIA Fehler die Ergebnisse kaum, allerdings besteht dabei eine wesentliche Quelle der Unsicherheit bei der Konversion von Volumenänderungen in Massenänderungen. Es besteht die Möglichkeit, Daten der Satellitengravimetrie sowie der Satellitenaltimetrie zu kombinieren und somit die Eismassenänderungen sowie GIA-Masseneffekte gemeinsam zu bestimmen, z. B. als Lösung eines inversen Problems (gemeinsame Dateninversion). Dies ist eine Alternative zur Verwendung von Ergebnissen der GIA-Modellierung in der Datenprozessierung der Satellitengravimetrie. Ergebnisse von Datenkombinationsmethoden sind dabei nicht nur ein Mittel zum Zweck, um die Schätzung von Eismassenänderungen zu verbessern. Sie können auch zur Beantwortung geodynamischer Fragestellungen beitragen. Allerdings unterliegen bisherige Schätzverfahren, die Daten der Satellitengravimetrie und Satellitenaltimetrie kombinieren, Limitierungen. Viele Ansätze ermöglichen die GIA Schätzungen nur in einem regionalen Rahmen und nicht in einem globalen Rahmen. Andere Ansätze hängen stark von Vorinformationen der geophysikalischen Modellierung ab, die aber große Unsicherheiten aufweisen. Außerdem ergeben sich Limitierungen durch gewählte Prozessierungsentscheidungen, wie z. B. durch die Verwendung deterministischer Parameter über definierte Zeitintervalle oder z. B. durch die Berücksichtigungen der Fehler der verwendeten Datensätze. Diese Arbeit untersucht Weiterentwicklungen von Datenkombinationsmethoden, welche die Quantifizierung von Eismassenänderungen und des gegenwärtigen GIA-induzierten Masseneffekts ermöglichen. Konkret kombinieren die hier untersuchten Ansätze: gemessene Gravitationsfeldänderungen der Satellitengravimetrie, gemessene Oberflächenhöhenänderungen der Satellitenaltimetrie, modellierte Oberflächenmassenbilanzen sowie modellierte Firndickenänderungen der regionalen Klimamodellierung. Diese kumulative Dissertation umfasst drei Publikationen, die drei Aspekte von Datenkombinationsansätzen untersuchten. Die erste Publikation analysierte einen regionalen Kombinationsansatzes in Antarktika und die Ergebnisse zeigten eine bedeutende Abhängigkeit des ermittelten GIA-Effekts von den verwendeten Eingangsdatensätzen und Prozessierungsentscheidungen. Ein ursprünglicher Bias im ermittelten GIA-Effekt, aufgrund der sphärisch-harmonischen Koeffizienten vom Grad-1 sowie c₂₀, kann durch eine Biaskorrektur erheblich reduziert werden. Dadurch sind die GIA-Schätzungen allerdings regional beschränkt und es wird verhindert, dass ein solcher Ansatz in einem globalen Rahmen implementiert werden kann. Die zweite Publikation ermittelt Langzeitmassentrends zusammen mit deren zeitlichen Änderungen, die von der Satellitengravimetrie und Satellitenaltimetrie gemeinsam beobachtet werden. Hierfür wurde ein Zustandsraumfilterverfahren auf die Datensätze angewandt, das es ermöglicht, die zeitlichen Veränderungen der Parameter über die Zeit zu bestimmen, unter der Berücksichtigung zeitlicher Korrelation kurzfristiger Fluktuationen. Dabei zeigt sich für Abflussbecken in der Westantarktis ein sich beschleunigender eisdynamisch induzierter Eismassenverlust. Dagegen ist die zeitliche Variabilität der Langzeittrends in der Ostantarktis gering. Bemerkenswert ist, dass die Trends im Dronning Maud Land und Enderby Land positiv sind. Die dritte Publikation präsentiert einen globalen Ansatz, der die gemeinsame Schätzung von Eismassenänderung, der GIA-Effekte sowie Änderungen der Firndicke ermöglicht, unter der Berücksichtigung räumlicher Fehlerkovarianzen. Bei der Wahl der GIA-Parametrisierung in Antarktika wurde die Intention verfolgt, GIA-Effekte räumlich aufzulösen, die bisher nicht von GIA-Modellen vorhergesagt wurden. Mit Simulationsexperimenten konnte die Machbarkeit des Ansatzes unter realistischer Limitierungen der Satelliten- und Modellprodukte demonstriert werden. Diese Rahmenschrift präsentiert auch eine erste Anwendung der Inversionsmethode aus Publikation 3 unter Verwendung echter Daten. Der Fokus dieser Anwendung liegt auf Antarktika über das Zeitintervall Januar 2011 bis Dezember 2020. Ergebnisse für den Antarktischen Eisschild sind: (i) eine Eismassenänderung von (−150 ± 5) Gt a⁻¹, (ii) eine Änderung des Luftgehalts der Firnschicht von (40 ± 5) km³ a⁻¹ und (iii) ein integrierter GIA-induzierter Masseneffekt von (72 ± 4) Gt a⁻¹. Diese Ergebnisse sind vielversprechend mit Hinblick auf die Anwendbarkeit der Methode, da sie vergleichbar zu bereits publizierten Ergebnissen sind. Dabei wurden sie in einem global-konsistenten Rahmen ohne die Anwendung konventioneller Filterungen ermittelt. Im Zuge zukünftigen Arbeiten soll die Methodik weiter verbessert werden und schließlich in einem globalen Inversionsrahmen implementiert werden, der die Bestimmung aller Meeresspiegelbeiträge gemeinsam ermöglicht.:1 Introduction 2 Processes over ice sheets inducing changes in Earth’s gravity and geometry 3 Data sets 4 Data combinations over ice sheets 5 Publications 6 Inversion of real data for glacial isostatic adjustment and ice mass changes in Antarctica 7 Outlook 8 Conclusions
6

Feasibility of a global inversion for spatially resolved glacial isostatic adjustment and ice sheet mass changes proven in simulation experiments

Willen, Matthias O., Horwath, Martin, Groh, Andreas, Helm, Veit, Uebbing, Bernd, Kusche, Jürgen 19 April 2024 (has links)
Estimating mass changes of ice sheets or of the global ocean from satellite gravimetry strongly depends on the correction for the glacial isostatic adjustment (GIA) signal. However, geophysical GIA models are different and incompatible with observations, particularly in Antarctica. Regional inversions have resolved GIA over Antarctica without ensuring global consistency, while global inversions have been mostly constrained by a priori GIA patterns. For the first time, we set up a global inversion to simultaneously estimate ice sheet mass changes and GIA, where Antarctic GIA is spatially resolved using a set of global GIA patterns. The patterns are related to deglaciation impulses localized along a grid over Antarctica. GIA associated with four regions outside Antarctica is parametrized by global GIA patterns induced by deglaciation histories. The observations we consider here are satellite gravimetry, satellite altimetry over Antarctica and Greenland, as well as modelled firn thickness changes. Firn thickness changes are also parametrized to account for systematic errors in their modelling. Results from simulation experiments using realistic signals and error covariances support the feasibility of the approach. For example, the spatial RMS error of the estimated Antarctic GIA effect, assuming a 10-year observation period, is 31% and 51%, of the RMS of two alternative global GIA models. The integrated Antarctic GIA error is 8% and 5%, respectively, of the integrated GIA signal of the two models. For these results realistic error covariances incorporated in the parameter estimation process are essential. If error correlations are neglected, the Antarctic GIA RMS error is more than twice as large.Highlights We present a globally consistent inversion approach to co-estimate glacial isostatic adjustment effects together with changes of the ice mass and firn air content in Greenland and Antarctica. The inversion method utilizes data sets from satellite gravimetry, satellite altimetry, regional climate modelling, and firn modelling together with the full error-covariance information of all input data. The simulation experiments show that the proposed GIA parametrization in Antarctica can resolve GIA effects unpredicted by geophysical modelling, despite realistic input-data limitations.
7

GPS-Anwendungen in der Sportwissenschaft - Entwicklung eines Messverfahrens für das Skispringen

Blumenbach, Thomas 31 July 2005 (has links) (PDF)
Die zentimetergenaue satellitengestützte Positionierung hat in den letzten Jahren immer größere Verbreitung in den verschiedensten Bereichen gefunden. In der Literatur wird von ersten Anwendungen auch in der Sportwissenschaft berichtet. Für höchste Genauigkeitsanforderungen werden geodätische GPS-Empfänger und Antennen eingesetzt, deren Anbringung an Athleten aufgrund ihrer Masse und ihres Volumens jedoch problematisch erscheinen.Ausgehend von den Möglichkeiten, die miniaturisierte Elektronik heute bietet, wurde für die Anwendung im Skispringen ein spezieller GPS-Empfänger entwickelt, der komplett in einen Sprunghelm integriert werden konnte. Damit entstehen nur minimale Beeinträchtigungen im Training. Der untersuchte Athlet benutzt anstatt seines eigenen Helms den Messhelm. Die topographische Lage der Schanzen bewirkt größere Abschattungen der Satellitensignale, sodass GPS-Messungen nicht auf jeder Schanze und zu jeder Tageszeit möglich sind. Die Anzahl gleichzeitig beobachtbarer Satelliten ist vergleichsweise gering. Zentimetergenaue Positionen können zudem nur nach erfolgreicher Mehrdeutigkeitsfestsetzung erzeugt werden. Gängige GPS-Berechnungsalgorithmen gehen dabei unter anderem von der Voraussetzung ausreichend langer und unterbrechungsfreier Messungen aus, die mit der nutzbaren Zeitspanne von 10-20 Sekunden für Anlauf, Absprung, Flug und Landung jedoch nicht erfüllt werden kann. Deshalb wurde ein laserbasiertes Lichtschrankensystem entwickelt, mit dem Passpunktinformationen für den GPSHelm beim Absprung vom Schanzentisch erzeugt werden können. Diese Informationen fließen in die GPS-Trägerphasenauswertung ein und sorgen für eine hohe Genauigkeit und Zuverlässigkeit der Mehrdeutigkeitsfestsetzung. Der gesamte Sprung kann so zentimetergenau bestimmt werden. Im Rahmen von Trainingslehrgängen wurden Messungen gemeinsam mit kinemetrischen und dynamometrischen Untersuchungen durchgeführt und erfolgreich ausgewertet. Anhand dieser Ergebnisse wurde dargelegt, welche vielfältigen Informationen in Geschwindigkeits- und Ortskurven für Anlauf-, Absprung- und Flugphase enthalten sind. / Carrier phase based GPS applications with centimeter accuracy have become more popular over the last years, not only in surveying. First investigations are accomplished in sports sciences as well. However, most geodetic GPS equipment is too large and too heavy for attaching it at the athletes body. Using the potential of miniaturized electronics, a special GPS receiver for ski jumping was developed. The hardware could be integrated completely into a common jumping helmet. Striving to an ideal measurement system with no influence on the athlete activities only little adverse effects remain on the athletes using the GPS-helmet. The topography of jumping hills results in a more or less shadowing of the GPS satellite signals. Not all jumping hills are applicable for GPS measurements. Measurement campaigns need to be well planned considering satellite constellation issues. Centimeter accuracy requires successful integer ambiguity fixing. Common algorithms assume uninterrupted signal reception over a sufficient long time. But the 10 ?20 seconds for an attempt, take-off, flight and landing are not long enough. Thus a laser light barrier array was developed. It determines position and time of the GPS-helmet during athletes take-off from the ramp. This information enables the ambiguity fixing and enhances accuracy and reliability of the solution, even for short GPS measurement segments. The system was successfully tested during some training sessions of german ski jumpers. It was shown which informations can be derived from positions and velocities for several phases of a jump.
8

GPS-Anwendungen in der Sportwissenschaft - Entwicklung eines Messverfahrens für das Skispringen

Blumenbach, Thomas 15 April 2005 (has links)
Die zentimetergenaue satellitengestützte Positionierung hat in den letzten Jahren immer größere Verbreitung in den verschiedensten Bereichen gefunden. In der Literatur wird von ersten Anwendungen auch in der Sportwissenschaft berichtet. Für höchste Genauigkeitsanforderungen werden geodätische GPS-Empfänger und Antennen eingesetzt, deren Anbringung an Athleten aufgrund ihrer Masse und ihres Volumens jedoch problematisch erscheinen.Ausgehend von den Möglichkeiten, die miniaturisierte Elektronik heute bietet, wurde für die Anwendung im Skispringen ein spezieller GPS-Empfänger entwickelt, der komplett in einen Sprunghelm integriert werden konnte. Damit entstehen nur minimale Beeinträchtigungen im Training. Der untersuchte Athlet benutzt anstatt seines eigenen Helms den Messhelm. Die topographische Lage der Schanzen bewirkt größere Abschattungen der Satellitensignale, sodass GPS-Messungen nicht auf jeder Schanze und zu jeder Tageszeit möglich sind. Die Anzahl gleichzeitig beobachtbarer Satelliten ist vergleichsweise gering. Zentimetergenaue Positionen können zudem nur nach erfolgreicher Mehrdeutigkeitsfestsetzung erzeugt werden. Gängige GPS-Berechnungsalgorithmen gehen dabei unter anderem von der Voraussetzung ausreichend langer und unterbrechungsfreier Messungen aus, die mit der nutzbaren Zeitspanne von 10-20 Sekunden für Anlauf, Absprung, Flug und Landung jedoch nicht erfüllt werden kann. Deshalb wurde ein laserbasiertes Lichtschrankensystem entwickelt, mit dem Passpunktinformationen für den GPSHelm beim Absprung vom Schanzentisch erzeugt werden können. Diese Informationen fließen in die GPS-Trägerphasenauswertung ein und sorgen für eine hohe Genauigkeit und Zuverlässigkeit der Mehrdeutigkeitsfestsetzung. Der gesamte Sprung kann so zentimetergenau bestimmt werden. Im Rahmen von Trainingslehrgängen wurden Messungen gemeinsam mit kinemetrischen und dynamometrischen Untersuchungen durchgeführt und erfolgreich ausgewertet. Anhand dieser Ergebnisse wurde dargelegt, welche vielfältigen Informationen in Geschwindigkeits- und Ortskurven für Anlauf-, Absprung- und Flugphase enthalten sind. / Carrier phase based GPS applications with centimeter accuracy have become more popular over the last years, not only in surveying. First investigations are accomplished in sports sciences as well. However, most geodetic GPS equipment is too large and too heavy for attaching it at the athletes body. Using the potential of miniaturized electronics, a special GPS receiver for ski jumping was developed. The hardware could be integrated completely into a common jumping helmet. Striving to an ideal measurement system with no influence on the athlete activities only little adverse effects remain on the athletes using the GPS-helmet. The topography of jumping hills results in a more or less shadowing of the GPS satellite signals. Not all jumping hills are applicable for GPS measurements. Measurement campaigns need to be well planned considering satellite constellation issues. Centimeter accuracy requires successful integer ambiguity fixing. Common algorithms assume uninterrupted signal reception over a sufficient long time. But the 10 ?20 seconds for an attempt, take-off, flight and landing are not long enough. Thus a laser light barrier array was developed. It determines position and time of the GPS-helmet during athletes take-off from the ramp. This information enables the ambiguity fixing and enhances accuracy and reliability of the solution, even for short GPS measurement segments. The system was successfully tested during some training sessions of german ski jumpers. It was shown which informations can be derived from positions and velocities for several phases of a jump.

Page generated in 0.0575 seconds