• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zur Ermittlung geophysikalischer Massensignale mit Schwerefeldmissionen: Eine Analyse des gegenwärtigen Standes am Beispiel der Antarktis

Horwath, Martin 22 February 2008 (has links) (PDF)
Die neuen Schwerefeld-Satellitenmissionen CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) und GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) können wesentlich zur Erforschung und Beobachtung des Systems Erde beitragen. Die Antarktis als ein Schlüsselglied im globalen Klimasystem bietet dabei besondere Herausforderungen. GRACE hat hier das Potential, zeitliche Massenänderungen (unter anderem der Eismasse) zu beobachten. Methoden zur Auswertung der Missionsdaten befinden sich gegenwärtig in einem intensiven Entwicklungsprozess, zu dem die vorliegende Arbeit beitragen soll. Inhaltlicher Schwerpunkt ist die Nutzung von GRACE zur Ermittlung zeitlicher Massenvariationen in der Antarktis. Die Analysen erfolgen in erster Linie aus der Position eines Nutzers von Standard-Missionsprodukten, betreffen aber grundsätzlich den gesamten Auswerteprozess. Nach einer Einführung werden zunächst die Hintergründe der Arbeit ausgeführt (Kapitel 2), speziell die theoretischen Grundlagen zu Massen- und Schwerefeldvariationen, Phänomene geophysikalischer Massenvariationen und die neuen Schwerefeldmissionen mit ihrem Potential zur Beobachtung solcher Massenvariationen. Ein Hauptteil der Arbeit behandelt die Frage, welche Signale und Fehler in den Schwerefeldlösungen der Missionen enthalten sind (Kapitel 3). Zunächst werden dazu gegenwärtige Prozessierungskonzepte zur Erstellung von CHAMP- und GRACE-Schwerefeldlösungen skizziert und die GRACE-Monatslösungen des GeoForschungsZentrums Potsdam als ein Standard-GRACE-Produkt vorgestellt. Es folgen verschiedene Analysen zur Fehlerstruktur der Schwerefeldlösungen, wobei insbesondere die Fehlerstruktur von GRACE-Monatslösungen anhand ihres Zeitverhaltens empirisch untersucht werden. Als eine Ursache empirisch festgestellter, aber durch Fehlermodelle nicht vollständig beschriebener Fehlerstrukturen werden schließlich Alias-Effekte von unmodellierten zeitlichen Variationen auf die geschätzten räumlichen Variationen qualitativ und quantitativ beschrieben und diskutiert. Ein zweiter Hauptteil untersucht geophysikalische Rückschlüsse aus GRACE-Schwerefeldlösungen mit Anwendung auf die Schätzung antarktischer Eismassensignale (Kapitel 4). Methoden zur Schätzung von Massensignalen aus den Schwerefeldlösungen werden systematisch zusammengestellt und teilweise weiterentwickelt. Die praktische Anwendung dieser Methoden zur Schätzung von Eismassenänderungen des Antarktischen Eisschildes und seiner großen Eiseinzugsgebiete wird erklärt. Ein Schwerpunkt liegt auf der Untersuchung der unterschiedlichen Mechanismen, die zu Fehlern der geschätzten Massensignale führen, sowie auf der Abschätzung dieser Fehler. Im Lichte der gewonnenen Einsichten in die methodischen Unsicherheiten der angewandten Analysetechniken erfolgt schließlich die Präsentation und Diskussion der Ergebnisse, einschließlich eines Vergleichs mit bisher veröffentlichten Massenbilanzresultaten. Möglichkeiten zu methodischen Verbesserungen, die in den vorangegangenen Untersuchungen deutlich werden, aber über den Rahmen der Arbeit hinausgehen, werden in einem eigenen Kapitel (Kapitel 5) diskutiert. Dies betrifft sowohl solche Verbesserungen, die bereits auf der Basis der gegenwärtigen GRACE-Monatslösungen möglich sind, als auch Verbesserungen in der Generierung dieser Monatslösungen oder, allgemeiner, in der GRACE-Prozessierung. Die Kombination der GRACE-Daten mit komplementären Beobachtungen und Modellen spielt in den unterschiedlichen Stadien der GRACE-Datenanalyse eine Schlüsselrolle. In Bezug auf die Trennung antarktischer Massensignale werden Kombinationsstrategien nochmals gesondert diskutiert. Schließlich werden die Hauptergebnisse der Arbeit nochmals zusammengefasst und eingeordnet (Kapitel 6). / The new gravity field satellite missions CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) can provide essential contributions to the study and the monitoring of the Earth system. Hereby, Antarctica as a key element of the climate system offers particular challenges. GRACE has the potential to observe temporal variations of masses such as ice masses, in particular. Methods to analyse the mission data are currently in a process of intensive development. The present work aims to contribute to this process. The focus is on the use of GRACE to determine temporal mass variations in Antarctica. The analyses are carried out from the viewpoint of a standard product user. Nonetheless, they concern the entire process of GRACE data analysis. After an introduction, the background of the work is explained, in particular the theoretical fundamentals of mass and gravity field variations, the phenomena of geophysical mass variations and the new gravity field missions with their potential to observe these variations (chapter 2). One main part of the work (chapter 3) treats the question which signals and errors are contained in the missions' gravity field solutions (chapter 3). Current CHAMP and GRACE processing approaches are outlined. The GRACE monthly solutions by GeoForschungsZentrum Potsdam are introduced. Subsequently, different analyses about error structures of gravity field mission solutions are presented. In particular, an empirical analysis of time-variations of the GRACE monthly solutions reveals error structures which are not completely described by error models. As one cause of this discrepancy, alias effects of unmodelled temporal variations on the spatial patterns of the solutions are discussed qualitatively and quantitatively. Another main part of the work (chapter 4) investigates geophysical inferences from the GRACE monthly solutions, with Antarctica taken as a case study. Methods to estimate mass signals are systematised and partly enhanced. The practical applications of these methods for the estimation of Antarctic ice mass changes is explained. The different error mechanisms are investigated in detail, and corresponding errors are assessed. The results about Antarctic ice mass changes are then presented, compared to previous results and discussed in the light of the remaining methodological uncertainties. The studies reveal directions for methodological improvements, and so, related ideas are discussed in a separate chapter (chapter 5). They concern both the analysis of current GRACE monthly solutions and the generation of these solutions, or, more generally, the GRACE processing. The combination of GRACE data with complementary observations and models plays a key role in the different levels of GRACE data analysis. Combination strategies are, hence, once more discussed with regard to Antarctic mass signals. Finally, the main results of the work are summarised and discussed in a broader context.
2

Regionale Geoidmodellierung in Polargebieten

Schwabe, Joachim 07 July 2015 (has links) (PDF)
Der regionalen Schwerefeldmodellierung in polaren Gebieten kommt in vielerlei Hinsicht eine besondere und wachsende Bedeutung zu. Einerseits sind hochauflösende und präzise Geoidmodelle eine wichtige Eingangsgröße bei der Untersuchung und Quantifizierung geophysikalischer, ozeanographischer bzw. glaziologischer Phänomene, z. B. bei der Bestimmung der mittleren dynamischen Ozeantopographie oder der Anwendung des Schwimmgleichgewichts im Bereich von Schelfeisen, Meereis oder subglazialen Seen. Zudem werden sie allgemein zur Referenzierung von Höhenmodellen benötigt. Andererseits sind, aufgrund der unvermeidbaren polaren Datenlücken von Satellitenbeobachtungen jenseits der Grenzbreite (sog. „Polloch“), terrestrische Schweredaten auch für die globale Schwerefeldmodellierung unerlässlich. Jedoch sind die verfügbaren terrestrischen (bodennahen) Schwerebeobachtungen insbesondere im Gebiet der Antarktis äußerst lückenhaft und heterogen. So entspricht das tatsächliche Auflösungsvermögen selbst aktueller kombinierter Schwerefeldmodelle wie EGM2008 oder EIGEN-6C über dem antarktischen Kontinent lediglich dem der reinen Satellitenmodelle aus GRACE bzw. GOCE. Des Weiteren sind Standardverfahren der regionalen Geoidmodellierung hier nicht ohne Weiteres anwendbar. Neben der Heterogenität der Daten als praktischer Herausforderung muss aus theoretischer Sicht dem zusätzlichen Dichtekontrast durch das Eis Rechnung getragen werden. Die vorliegende kumulative Dissertation greift diese Problematik auf. Während die einzelnen Publikationen die Ergebnisse ausgewählter regionaler Fallstudien präsentieren, soll die folgende zusammenfassende Abhandlung einen doppelten Bogen spannen, indem die geophysikalischen Phänomene gleichzeitig als zu untersuchende Anwendungsgebiete und als Einflussfaktoren im Kontext der regionalen Geoidmodellierung beschrieben werden. So wird am Beispiel der Weddellsee gezeigt, wie die Meereisbedeckung die Qualität und Zuverlässigkeit der mithilfe der Satellitenaltimetrie abgeleiteten Schwerefeldmodelle beeinträchtigt. Diese Modelle bilden derzeit die alleinige Datengrundlage für die hochauflösenden globalen Modelle im Gebiet des Antarktischen Ozeans. Zugleich wird anhand des verfeinerten regionalen Modells und daraus abgeleiteter geostrophischer Geschwindigkeiten demonstriert, dass selbst lückenhafte und heterogene terrestrische Daten hier einen wesentlichen Beitrag zur simultanen Kalibrierung und Vereinheitlichung des Datenbestandes leisten können. Im Ergebnis konnten in den küstennahen Gewässern Differenzen von mehreren Dezimetern gegenüber Geoidhöhen aus EGM2008 festgestellt werden, welche teils auf systematische Abweichungen und teils auf Rauschen im globalen Modell zurückzuführen sind. Über dem Festland erreicht dessen Vernachlässigungsfehler im quadratischen Mittel sogar 0,75 m und Maxima von über 3 m. Ein weiteres verfeinertes und, dank geeigneter Eingangsdaten, sehr genaues und hochauflösendes Geoidmodell wird für die Region um den Vostoksee in der Ostantarktis abgeleitet. In Kombination mit Eisoberflächenhöhen und Eisdicken gelingt es, das Schwimmgleichgewicht des subglazialen Sees nachzuweisen. Das gegenüber GOCE zusätzlich gewonnene Geoidsignal ist hier mit 0,56 m Standardabweichung zwar etwas kleiner, jedoch wird im Vergleich mit der residualen Auslenkung des Seespiegels (0,26 m Standardabweichung) auch für diese Anwendung der signifikante und gegenüber dem Auflösungsvermögen von GOCE auch notwendige Beitrag eines regionalen Geoidmodells deutlich. Für das hydrostatische Gleichgewicht eines subglazialen Sees ist streng genommen das tatsächliche Schwerepotential in Höhe des Seespiegels maßgeblich. Dessen Berechnung erfordert eine Fortsetzung des Störpotentials nach unten innerhalb der Topographie, welche konzeptionell in engem Zusammenhang mit dem bekannten Geoid-Quasigeoid-Separationsterm steht. Dessen oft angenommene Approximation mithilfe der Bougueranomalie kann, angesichts der heutigen Anforderungen an ein modernes zentimetergenaues Geoid, gerade in rauem Gelände zu ungenau sein. In Anlehnung an aktuelle Arbeiten auf diesem Gebiet wird ein verallgemeinerter und zugleich verfeinerter Ansatz zur praktischen Berechnung des Terms erarbeitet. Am Beispiel des Himalaya werden die einzelnen Anteile im Rahmen einer Simulationsstudie quantifiziert und insbesondere ihre Sensitivität gegenüber dem Integrationsradius der Topographie untersucht. Besonderes Augenmerk liegt ebenso auf dem indirekten Effekt der Topographie in Bezug auf das Potential, welcher, im Gegensatz zur Anwendung eines planaren Modells, in sphärischer Betrachtungsweise nicht verschwindet. / In many respects, regional gravity field modeling in polar areas is of special, and growing, interest. On the one hand, high-resolution and precise geoid models are an important input parameter to investigate and quantify manifold geophysical, oceanographical and glaciological phenomena, e.g., the determination of the mean dynamic ocean topography, or the application of the hydrostatic equilibrium condition in the areas of ice shelves, sea ice, or subglacial lakes. Moreover, geoid models are in general needed as a reference for height models. On the other hand, because of the unavoidable polar data gaps in satellite measurements due to the inclination (the so-called “polar gap”), terrestrial gravity data are indispensable also for global gravity field modeling. However, the available terrestrial (ground-based) gravity datasets, in particular of Antarctica, are very sparse and heterogeneous. For example, over the Antarctic continent the true resolution of even the most recent combined global geopotential models such as EGM2008 or EIGEN-6C only corresponds to that of the satellite-only models derived from GRACE and GOCE, respectively. Furthermore, standard techniques of regional geoid modeling cannot be readily used in this area. Apart from the heterogeneity of the data as a practical challenge the additional density contrast implied by the covering sheet needs to be accounted for from the theoretical point of view. This complex situation is the starting point for the present cumulative dissertation. Whereas the individual publications present the results of selected regional case studies, the intention of the following summary is to draw an integrated picture aiming at explaining the geophysical phenomena as both applications and influencing factors in the context of regional geoid modeling. Using the example of the Weddell Sea it is shown how sea-ice coverage affects the quality and reliability of marine gravity field models derived from radar satellite altimetry. At present, these models are the only input data to the high-resolution global geopotential models. At the same time, the refined regional model and geostrophic velocities derived thereof are employed to demonstrate how even sparse and heterogeneous terrestrial gravity data may provide a contribution to simultaneously calibrate and unify the available datasets. As a result, near the coast differences at the order of some decimeters could be observed in comparison with EGM2008, originating partly from systematic effects and noise in the global model. In the continental areas, its omission error even yields a standard deviation of 0.75 m and attains a maximum of more than 3 m. Another refined and, owing to appropriate input data, very precise and highly resolving geoid model is derived for the region around subglacial Lake Vostok. In combination with ice-surface heights and ice thickness data it is used to provide observational evidence that the lake is in a state of hydrostatic equilibrium. There, the additional geoid signal w.r.t. GOCE is a bit smaller (0.56 m standard deviation). However, considering the residual deviations of the apparent lake level (0.26 m standard deviation) the significant and necessary, as compared to the resolution of GOCE, contribution of a regional geoid model to this application is shown. In a strict sense, the relevant quantity to evaluate the hydrostatic equilibrium condition of a subglacial lake is the actual geopotential at the anticipated lake level. Its computation requires a downward continuation of the disturbing potential inside the topography, which is closely related to the concept of the well-known geoid-quasigeoid separation term. In the past, this term was frequently described as an approximation by means of the Bouguer anomaly. However, considering the modern requirements of the “one-centimeter geoid” this approximation may be too coarse over rough terrain. Following recent works in this field, a generalized yet refined approach for practical implementation of the term is developed. The individual constituents of the term are quantified. In particular, their sensitivity against the radius up to which topography is taken into account is investigated. For this simulation study, the Himalaya mountain region served as test area. Furthermore, special focus is given to the indirect of topography on the potential which, contrary to applying a planar model, does not vanish in the spherical approach.

Page generated in 0.013 seconds