• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Erweiterte Modellbildung zur Bestimmung von Positionszeitreihen global verteilter GPS-Stationen

Fritsche, Mathias 18 July 2013 (has links) (PDF)
Eine Vielzahl geophysikalischer Prozesse im System Erde gehen mit Massenverlagerungen einher. Änderungen in der Massenverteilung führen zu beobachtbaren Änderungen im Schwerefeld und Rotationsverhalten der Erde sowie zu einer Deformation der Erdkruste. Die messtechnische Erfassung dieser Größen erlaubt einen Rückschluss auf die beteiligten Massentransportprozesse und stellt damit eine Grundvoraussetzung für die Erdsystemforschung dar. Satellitengestützte Navigationssysteme wie z.B. das Global Positioning System (GPS) spielen in diesem Zusammenhang eine zentrale Rolle, denn sie ermöglichen eine präzise Positionsbestimmung auf globaler Ebene. Für die Bestimmung eines terrestrischen Referenzrahmens werden üblicherweise mittlere Koordinaten zu einer Referenzepoche sowie zugehörige lineare Änderungen mit der Zeit angenommen. Bei diesem Konzept führen alle nichtlinearen Stationsbewegungen, deren Effekte im Rahmen der Beobachtungsmodellierung nicht reduziert werden, zu Abweichungen gegenüber dem linearen Bewegungsmodell. Diese Abweichungen haben Einfluss auf die Positionszeitreihen der in Betracht gezogenen Stationen und erlauben einen Rückschluss auf die auflastinduzierenden Änderungen in der Massenverteilung. Die Bestimmung von Stationspositionszeitreihen mittels GPS bildet den Kern der vorliegenden Arbeit. Die Arbeit baut inhaltlich auf vier Publikationen auf, die sich unterschiedlichen Fragestellungen in Bezug auf die Positionsbestimmung mittels GPS widmen. Eine zusammenfassende Diskussion gibt einen Überblick über Massenvariationen im System Erde und auflastinduzierte Krustendeformation. Spezielle Aspekte in Bezug auf eine konsistente Modellierung von Massenvariationen und daraus abgeleiteter Deformationsanteile werden hier dargelegt. Praktische Untersuchungen erfolgen zu Änderungen in der Massenverteilung aufgrund von atmosphärischen Druckvariationen, Ozeanzirkulation und hydrologisch bedingten Wasserspeicheränderungen im Bereich der Kontinente. Der Einfluss ionosphärischer Terme höherer Ordnung auf GPS-Parameterschätzwerte wird untersucht. Diese Analyse erfolgt vor dem Hintergrund, dass bei der vermittelnden Ausgleichung generell auch systematische Effekte, die für sich genommen keine Stationspositionsänderung verursachen, trotzdem Einfluss auf geschätzte Stationskoordinaten haben. Die Sensitivität der GPS-Beobachtungen gegenüber der Auflastdeformation wird genutzt, modellierte Massenvariationen zu validieren. Mittels gegebener Massenvariationen werden Deformationszeitreihen abgeleitet. Für diese Zeitreihen werden im Zuge der Parameterschätzung Skalierungsfaktoren bestimmt und als Indikator für die Übereinstimmung zwischen modellierter und beobachteter Deformation gewertet. Änderungen der Massenverteilung im System Erde zeichnen sich unter anderem durch eine Schwerpunktverlagerung gegenüber der festen Erde aus. Wird die Massenverteilung durch eine sphärisch-harmonische Reihenentwicklung dargestellt, so sind die Terme ersten Grades mit der Schwerpunktverlagerung verknüpft. Die Grad-1-Anteile der Massenvariation können mittels satellitengravimetrischer Beobachtungen prinzipiell nicht bestimmt werden. Sie lassen sich aber mit Hilfe der GPS-Beobachtungen aus dem zugehörigen Deformationsanteil ermitteln. Der Einfluss systematischer Beobachtungsfehler auf diesem Inversionsansatz wird untersucht. Bei der Bestimmung globaler GPS-Lösungen werden die in den Beobachtungen enthaltenen Auflasteffektes prinzipiell auf alle simultan geschätzten Parameter abgebildet. Diese systematische Verfälschung erschwert die geophysikalische Interpretation von Stationspositionszeitreihen. Ein integrierter Ansatz wird entwickelt, um bestehende Vorinformation über verschiedene Massenvariationsprozesse bestmöglich einzubeziehen.
2

Erweiterte Modellbildung zur Bestimmung von Positionszeitreihen global verteilter GPS-Stationen

Fritsche, Mathias 18 June 2013 (has links)
Eine Vielzahl geophysikalischer Prozesse im System Erde gehen mit Massenverlagerungen einher. Änderungen in der Massenverteilung führen zu beobachtbaren Änderungen im Schwerefeld und Rotationsverhalten der Erde sowie zu einer Deformation der Erdkruste. Die messtechnische Erfassung dieser Größen erlaubt einen Rückschluss auf die beteiligten Massentransportprozesse und stellt damit eine Grundvoraussetzung für die Erdsystemforschung dar. Satellitengestützte Navigationssysteme wie z.B. das Global Positioning System (GPS) spielen in diesem Zusammenhang eine zentrale Rolle, denn sie ermöglichen eine präzise Positionsbestimmung auf globaler Ebene. Für die Bestimmung eines terrestrischen Referenzrahmens werden üblicherweise mittlere Koordinaten zu einer Referenzepoche sowie zugehörige lineare Änderungen mit der Zeit angenommen. Bei diesem Konzept führen alle nichtlinearen Stationsbewegungen, deren Effekte im Rahmen der Beobachtungsmodellierung nicht reduziert werden, zu Abweichungen gegenüber dem linearen Bewegungsmodell. Diese Abweichungen haben Einfluss auf die Positionszeitreihen der in Betracht gezogenen Stationen und erlauben einen Rückschluss auf die auflastinduzierenden Änderungen in der Massenverteilung. Die Bestimmung von Stationspositionszeitreihen mittels GPS bildet den Kern der vorliegenden Arbeit. Die Arbeit baut inhaltlich auf vier Publikationen auf, die sich unterschiedlichen Fragestellungen in Bezug auf die Positionsbestimmung mittels GPS widmen. Eine zusammenfassende Diskussion gibt einen Überblick über Massenvariationen im System Erde und auflastinduzierte Krustendeformation. Spezielle Aspekte in Bezug auf eine konsistente Modellierung von Massenvariationen und daraus abgeleiteter Deformationsanteile werden hier dargelegt. Praktische Untersuchungen erfolgen zu Änderungen in der Massenverteilung aufgrund von atmosphärischen Druckvariationen, Ozeanzirkulation und hydrologisch bedingten Wasserspeicheränderungen im Bereich der Kontinente. Der Einfluss ionosphärischer Terme höherer Ordnung auf GPS-Parameterschätzwerte wird untersucht. Diese Analyse erfolgt vor dem Hintergrund, dass bei der vermittelnden Ausgleichung generell auch systematische Effekte, die für sich genommen keine Stationspositionsänderung verursachen, trotzdem Einfluss auf geschätzte Stationskoordinaten haben. Die Sensitivität der GPS-Beobachtungen gegenüber der Auflastdeformation wird genutzt, modellierte Massenvariationen zu validieren. Mittels gegebener Massenvariationen werden Deformationszeitreihen abgeleitet. Für diese Zeitreihen werden im Zuge der Parameterschätzung Skalierungsfaktoren bestimmt und als Indikator für die Übereinstimmung zwischen modellierter und beobachteter Deformation gewertet. Änderungen der Massenverteilung im System Erde zeichnen sich unter anderem durch eine Schwerpunktverlagerung gegenüber der festen Erde aus. Wird die Massenverteilung durch eine sphärisch-harmonische Reihenentwicklung dargestellt, so sind die Terme ersten Grades mit der Schwerpunktverlagerung verknüpft. Die Grad-1-Anteile der Massenvariation können mittels satellitengravimetrischer Beobachtungen prinzipiell nicht bestimmt werden. Sie lassen sich aber mit Hilfe der GPS-Beobachtungen aus dem zugehörigen Deformationsanteil ermitteln. Der Einfluss systematischer Beobachtungsfehler auf diesem Inversionsansatz wird untersucht. Bei der Bestimmung globaler GPS-Lösungen werden die in den Beobachtungen enthaltenen Auflasteffektes prinzipiell auf alle simultan geschätzten Parameter abgebildet. Diese systematische Verfälschung erschwert die geophysikalische Interpretation von Stationspositionszeitreihen. Ein integrierter Ansatz wird entwickelt, um bestehende Vorinformation über verschiedene Massenvariationsprozesse bestmöglich einzubeziehen.
3

Zur Ermittlung geophysikalischer Massensignale mit Schwerefeldmissionen: Eine Analyse des gegenwärtigen Standes am Beispiel der Antarktis

Horwath, Martin 22 February 2008 (has links) (PDF)
Die neuen Schwerefeld-Satellitenmissionen CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) und GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) können wesentlich zur Erforschung und Beobachtung des Systems Erde beitragen. Die Antarktis als ein Schlüsselglied im globalen Klimasystem bietet dabei besondere Herausforderungen. GRACE hat hier das Potential, zeitliche Massenänderungen (unter anderem der Eismasse) zu beobachten. Methoden zur Auswertung der Missionsdaten befinden sich gegenwärtig in einem intensiven Entwicklungsprozess, zu dem die vorliegende Arbeit beitragen soll. Inhaltlicher Schwerpunkt ist die Nutzung von GRACE zur Ermittlung zeitlicher Massenvariationen in der Antarktis. Die Analysen erfolgen in erster Linie aus der Position eines Nutzers von Standard-Missionsprodukten, betreffen aber grundsätzlich den gesamten Auswerteprozess. Nach einer Einführung werden zunächst die Hintergründe der Arbeit ausgeführt (Kapitel 2), speziell die theoretischen Grundlagen zu Massen- und Schwerefeldvariationen, Phänomene geophysikalischer Massenvariationen und die neuen Schwerefeldmissionen mit ihrem Potential zur Beobachtung solcher Massenvariationen. Ein Hauptteil der Arbeit behandelt die Frage, welche Signale und Fehler in den Schwerefeldlösungen der Missionen enthalten sind (Kapitel 3). Zunächst werden dazu gegenwärtige Prozessierungskonzepte zur Erstellung von CHAMP- und GRACE-Schwerefeldlösungen skizziert und die GRACE-Monatslösungen des GeoForschungsZentrums Potsdam als ein Standard-GRACE-Produkt vorgestellt. Es folgen verschiedene Analysen zur Fehlerstruktur der Schwerefeldlösungen, wobei insbesondere die Fehlerstruktur von GRACE-Monatslösungen anhand ihres Zeitverhaltens empirisch untersucht werden. Als eine Ursache empirisch festgestellter, aber durch Fehlermodelle nicht vollständig beschriebener Fehlerstrukturen werden schließlich Alias-Effekte von unmodellierten zeitlichen Variationen auf die geschätzten räumlichen Variationen qualitativ und quantitativ beschrieben und diskutiert. Ein zweiter Hauptteil untersucht geophysikalische Rückschlüsse aus GRACE-Schwerefeldlösungen mit Anwendung auf die Schätzung antarktischer Eismassensignale (Kapitel 4). Methoden zur Schätzung von Massensignalen aus den Schwerefeldlösungen werden systematisch zusammengestellt und teilweise weiterentwickelt. Die praktische Anwendung dieser Methoden zur Schätzung von Eismassenänderungen des Antarktischen Eisschildes und seiner großen Eiseinzugsgebiete wird erklärt. Ein Schwerpunkt liegt auf der Untersuchung der unterschiedlichen Mechanismen, die zu Fehlern der geschätzten Massensignale führen, sowie auf der Abschätzung dieser Fehler. Im Lichte der gewonnenen Einsichten in die methodischen Unsicherheiten der angewandten Analysetechniken erfolgt schließlich die Präsentation und Diskussion der Ergebnisse, einschließlich eines Vergleichs mit bisher veröffentlichten Massenbilanzresultaten. Möglichkeiten zu methodischen Verbesserungen, die in den vorangegangenen Untersuchungen deutlich werden, aber über den Rahmen der Arbeit hinausgehen, werden in einem eigenen Kapitel (Kapitel 5) diskutiert. Dies betrifft sowohl solche Verbesserungen, die bereits auf der Basis der gegenwärtigen GRACE-Monatslösungen möglich sind, als auch Verbesserungen in der Generierung dieser Monatslösungen oder, allgemeiner, in der GRACE-Prozessierung. Die Kombination der GRACE-Daten mit komplementären Beobachtungen und Modellen spielt in den unterschiedlichen Stadien der GRACE-Datenanalyse eine Schlüsselrolle. In Bezug auf die Trennung antarktischer Massensignale werden Kombinationsstrategien nochmals gesondert diskutiert. Schließlich werden die Hauptergebnisse der Arbeit nochmals zusammengefasst und eingeordnet (Kapitel 6). / The new gravity field satellite missions CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) can provide essential contributions to the study and the monitoring of the Earth system. Hereby, Antarctica as a key element of the climate system offers particular challenges. GRACE has the potential to observe temporal variations of masses such as ice masses, in particular. Methods to analyse the mission data are currently in a process of intensive development. The present work aims to contribute to this process. The focus is on the use of GRACE to determine temporal mass variations in Antarctica. The analyses are carried out from the viewpoint of a standard product user. Nonetheless, they concern the entire process of GRACE data analysis. After an introduction, the background of the work is explained, in particular the theoretical fundamentals of mass and gravity field variations, the phenomena of geophysical mass variations and the new gravity field missions with their potential to observe these variations (chapter 2). One main part of the work (chapter 3) treats the question which signals and errors are contained in the missions' gravity field solutions (chapter 3). Current CHAMP and GRACE processing approaches are outlined. The GRACE monthly solutions by GeoForschungsZentrum Potsdam are introduced. Subsequently, different analyses about error structures of gravity field mission solutions are presented. In particular, an empirical analysis of time-variations of the GRACE monthly solutions reveals error structures which are not completely described by error models. As one cause of this discrepancy, alias effects of unmodelled temporal variations on the spatial patterns of the solutions are discussed qualitatively and quantitatively. Another main part of the work (chapter 4) investigates geophysical inferences from the GRACE monthly solutions, with Antarctica taken as a case study. Methods to estimate mass signals are systematised and partly enhanced. The practical applications of these methods for the estimation of Antarctic ice mass changes is explained. The different error mechanisms are investigated in detail, and corresponding errors are assessed. The results about Antarctic ice mass changes are then presented, compared to previous results and discussed in the light of the remaining methodological uncertainties. The studies reveal directions for methodological improvements, and so, related ideas are discussed in a separate chapter (chapter 5). They concern both the analysis of current GRACE monthly solutions and the generation of these solutions, or, more generally, the GRACE processing. The combination of GRACE data with complementary observations and models plays a key role in the different levels of GRACE data analysis. Combination strategies are, hence, once more discussed with regard to Antarctic mass signals. Finally, the main results of the work are summarised and discussed in a broader context.
4

Zur Ermittlung geophysikalischer Massensignale mit Schwerefeldmissionen: Eine Analyse des gegenwärtigen Standes am Beispiel der Antarktis

Horwath, Martin 20 December 2007 (has links)
Die neuen Schwerefeld-Satellitenmissionen CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) und GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) können wesentlich zur Erforschung und Beobachtung des Systems Erde beitragen. Die Antarktis als ein Schlüsselglied im globalen Klimasystem bietet dabei besondere Herausforderungen. GRACE hat hier das Potential, zeitliche Massenänderungen (unter anderem der Eismasse) zu beobachten. Methoden zur Auswertung der Missionsdaten befinden sich gegenwärtig in einem intensiven Entwicklungsprozess, zu dem die vorliegende Arbeit beitragen soll. Inhaltlicher Schwerpunkt ist die Nutzung von GRACE zur Ermittlung zeitlicher Massenvariationen in der Antarktis. Die Analysen erfolgen in erster Linie aus der Position eines Nutzers von Standard-Missionsprodukten, betreffen aber grundsätzlich den gesamten Auswerteprozess. Nach einer Einführung werden zunächst die Hintergründe der Arbeit ausgeführt (Kapitel 2), speziell die theoretischen Grundlagen zu Massen- und Schwerefeldvariationen, Phänomene geophysikalischer Massenvariationen und die neuen Schwerefeldmissionen mit ihrem Potential zur Beobachtung solcher Massenvariationen. Ein Hauptteil der Arbeit behandelt die Frage, welche Signale und Fehler in den Schwerefeldlösungen der Missionen enthalten sind (Kapitel 3). Zunächst werden dazu gegenwärtige Prozessierungskonzepte zur Erstellung von CHAMP- und GRACE-Schwerefeldlösungen skizziert und die GRACE-Monatslösungen des GeoForschungsZentrums Potsdam als ein Standard-GRACE-Produkt vorgestellt. Es folgen verschiedene Analysen zur Fehlerstruktur der Schwerefeldlösungen, wobei insbesondere die Fehlerstruktur von GRACE-Monatslösungen anhand ihres Zeitverhaltens empirisch untersucht werden. Als eine Ursache empirisch festgestellter, aber durch Fehlermodelle nicht vollständig beschriebener Fehlerstrukturen werden schließlich Alias-Effekte von unmodellierten zeitlichen Variationen auf die geschätzten räumlichen Variationen qualitativ und quantitativ beschrieben und diskutiert. Ein zweiter Hauptteil untersucht geophysikalische Rückschlüsse aus GRACE-Schwerefeldlösungen mit Anwendung auf die Schätzung antarktischer Eismassensignale (Kapitel 4). Methoden zur Schätzung von Massensignalen aus den Schwerefeldlösungen werden systematisch zusammengestellt und teilweise weiterentwickelt. Die praktische Anwendung dieser Methoden zur Schätzung von Eismassenänderungen des Antarktischen Eisschildes und seiner großen Eiseinzugsgebiete wird erklärt. Ein Schwerpunkt liegt auf der Untersuchung der unterschiedlichen Mechanismen, die zu Fehlern der geschätzten Massensignale führen, sowie auf der Abschätzung dieser Fehler. Im Lichte der gewonnenen Einsichten in die methodischen Unsicherheiten der angewandten Analysetechniken erfolgt schließlich die Präsentation und Diskussion der Ergebnisse, einschließlich eines Vergleichs mit bisher veröffentlichten Massenbilanzresultaten. Möglichkeiten zu methodischen Verbesserungen, die in den vorangegangenen Untersuchungen deutlich werden, aber über den Rahmen der Arbeit hinausgehen, werden in einem eigenen Kapitel (Kapitel 5) diskutiert. Dies betrifft sowohl solche Verbesserungen, die bereits auf der Basis der gegenwärtigen GRACE-Monatslösungen möglich sind, als auch Verbesserungen in der Generierung dieser Monatslösungen oder, allgemeiner, in der GRACE-Prozessierung. Die Kombination der GRACE-Daten mit komplementären Beobachtungen und Modellen spielt in den unterschiedlichen Stadien der GRACE-Datenanalyse eine Schlüsselrolle. In Bezug auf die Trennung antarktischer Massensignale werden Kombinationsstrategien nochmals gesondert diskutiert. Schließlich werden die Hauptergebnisse der Arbeit nochmals zusammengefasst und eingeordnet (Kapitel 6). / The new gravity field satellite missions CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) can provide essential contributions to the study and the monitoring of the Earth system. Hereby, Antarctica as a key element of the climate system offers particular challenges. GRACE has the potential to observe temporal variations of masses such as ice masses, in particular. Methods to analyse the mission data are currently in a process of intensive development. The present work aims to contribute to this process. The focus is on the use of GRACE to determine temporal mass variations in Antarctica. The analyses are carried out from the viewpoint of a standard product user. Nonetheless, they concern the entire process of GRACE data analysis. After an introduction, the background of the work is explained, in particular the theoretical fundamentals of mass and gravity field variations, the phenomena of geophysical mass variations and the new gravity field missions with their potential to observe these variations (chapter 2). One main part of the work (chapter 3) treats the question which signals and errors are contained in the missions' gravity field solutions (chapter 3). Current CHAMP and GRACE processing approaches are outlined. The GRACE monthly solutions by GeoForschungsZentrum Potsdam are introduced. Subsequently, different analyses about error structures of gravity field mission solutions are presented. In particular, an empirical analysis of time-variations of the GRACE monthly solutions reveals error structures which are not completely described by error models. As one cause of this discrepancy, alias effects of unmodelled temporal variations on the spatial patterns of the solutions are discussed qualitatively and quantitatively. Another main part of the work (chapter 4) investigates geophysical inferences from the GRACE monthly solutions, with Antarctica taken as a case study. Methods to estimate mass signals are systematised and partly enhanced. The practical applications of these methods for the estimation of Antarctic ice mass changes is explained. The different error mechanisms are investigated in detail, and corresponding errors are assessed. The results about Antarctic ice mass changes are then presented, compared to previous results and discussed in the light of the remaining methodological uncertainties. The studies reveal directions for methodological improvements, and so, related ideas are discussed in a separate chapter (chapter 5). They concern both the analysis of current GRACE monthly solutions and the generation of these solutions, or, more generally, the GRACE processing. The combination of GRACE data with complementary observations and models plays a key role in the different levels of GRACE data analysis. Combination strategies are, hence, once more discussed with regard to Antarctic mass signals. Finally, the main results of the work are summarised and discussed in a broader context.

Page generated in 0.1175 seconds