• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calibration of the global hydrological model WGHM with water mass variations from GRACE gravity data

Werth, Susanna January 2010 (has links)
Since the start-up of the GRACE (Gravity Recovery And Climate Experiment) mission in 2002 time dependent global maps of the Earth's gravity field are available to study geophysical and climatologically-driven mass redistributions on the Earth's surface. In particular, GRACE observations of total water storage changes (TWSV) provide a comprehensive data set for analysing the water cycle on large scales. Therefore they are invaluable for validation and calibration of large-scale hydrological models as the WaterGAP Global Hydrology Model (WGHM) which simulates the continental water cycle including its most important components, such as soil, snow, canopy, surface- and groundwater. Hitherto, WGHM exhibits significant differences to GRACE, especially for the seasonal amplitude of TWSV. The need for a validation of hydrological models is further highlighted by large differences between several global models, e.g. WGHM, the Global Land Data Assimilation System (GLDAS) and the Land Dynamics model (LaD). For this purpose, GRACE links geodetic and hydrological research aspects. This link demands the development of adequate data integration methods on both sides, forming the main objectives of this work. They include the derivation of accurate GRACE-based water storage changes, the development of strategies to integrate GRACE data into a global hydrological model as well as a calibration method, followed by the re-calibration of WGHM in order to analyse process and model responses. To achieve these aims, GRACE filter tools for the derivation of regionally averaged TWSV were evaluated for specific river basins. Here, a decorrelation filter using GRACE orbits for its design is most efficient among the tested methods. Consistency in data and equal spatial resolution between observed and simulated TWSV were realised by the inclusion of all most important hydrological processes and an equal filtering of both data sets. Appropriate calibration parameters were derived by a WGHM sensitivity analysis against TWSV. Finally, a multi-objective calibration framework was developed to constrain model predictions by both river discharge and GRACE TWSV, realised with a respective evolutionary method, the ε-Non-dominated-Sorting-Genetic-Algorithm-II (ε-NSGAII). Model calibration was done for the 28 largest river basins worldwide and for most of them improved simulation results were achieved with regard to both objectives. From the multi-objective approach more reliable and consistent simulations of TWSV within the continental water cycle were gained and possible model structure errors or mis-modelled processes for specific river basins detected. For tropical regions as such, the seasonal amplitude of water mass variations has increased. The findings lead to an improved understanding of hydrological processes and their representation in the global model. Finally, the robustness of the results is analysed with respect to GRACE and runoff measurement errors. As a main conclusion obtained from the results, not only soil water and snow storage but also groundwater and surface water storage have to be included in the comparison of the modelled and GRACE-derived total water budged data. Regarding model calibration, the regional varying distribution of parameter sensitivity suggests to tune only parameter of important processes within each region. Furthermore, observations of single storage components beside runoff are necessary to improve signal amplitudes and timing of simulated TWSV as well as to evaluate them with higher accuracy. The results of this work highlight the valuable nature of GRACE data when merged into large-scale hydrological modelling and depict methods to improve large-scale hydrological models. / Das Schwerefeld der Erde spiegelt die Verteilung von Massen auf und unter der Erdoberfläche wieder. Umverteilungen von Erd-, Luft- oder Wassermassen auf unserem Planeten sind damit über eine kontinuierliche Vermessung des Erdschwerefeldes beobachtbar. Besonders Satellitenmissionen sind hierfür geeignet, da deren Umlaufbahn durch zeitliche und räumliche Veränderung der Schwerkraft beeinflusst wird. Seit dem Start der Satellitenmission GRACE (Gravity Recovery And Climate Experiment) im Jahr 2002 stellt die Geodäsie daher globale Daten von zeitlichen Veränderungen des Erdschwerefeldes mit hoher Genauigkeit zur Verfügung. Mit diesen Daten lassen sich geophysikalische und klimatologische Massenumverteilungen auf der Erdoberfläche studieren. GRACE liefert damit erstmals Beobachtungen von Variationen des gesamten kontinentalen Wasserspeichers, welche außerordentlich wertvoll für die Analyse des Wasserkreislaufes über große Regionen sind. Die Daten ermöglichen die Überprüfung von großräumigen mathematischen Modellen der Hydrologie, welche den natürlichen Kreislauf des Wassers auf den Kontinenten, vom Zeitpunkt des Niederschlags bis zum Abfluss in die Ozeane, nachvollziehbar machen. Das verbesserte Verständnis über Transport- und Speicherprozesse von Süßwasser ist für genauere Vorhersagen über zukünftige Wasserverfügbarkeit oder potentielle Naturkatastrophen, wie z.B. Überschwemmungen, von enormer Bedeutung. Ein globales Modell, welches die wichtigsten Komponenten des Wasserkreislaufes (Boden, Schnee, Interzeption, Oberflächen- und Grundwasser) berechnet, ist das "WaterGAP Global Hydrology Model" (WGHM). Vergleiche von berechneten und beobachteten Wassermassenvariationen weisen bisher insbesondere in der jährlichen Amplitude deutliche Differenzen auf. Sehr große Unterschiede zwischen verschiedenen hydrologischen Modellen betonen die Notwendigkeit, deren Berechnungen zu verbessern. Zu diesem Zweck verbindet GRACE die Wissenschaftsbereiche der Geodäsie und der Hydrologie. Diese Verknüpfung verlangt von beiden Seiten die Entwicklung geeigneter Methoden zur Datenintegration, welche die Hauptaufgaben dieser Arbeit darstellten. Dabei handelt es sich insbesondere um die Auswertung der GRACE-Daten mit möglichst hoher Genauigkeit sowie um die Entwicklung einer Strategie zur Integration von GRACE Daten in das hydrologische Modell. Mit Hilfe von GRACE wurde das Modell neu kalbriert, d.h. Parameter im Modell so verändert, dass die hydrologischen Berechnungen besser mit den GRACE Beobachtungen übereinstimmen. Dabei kam ein multikriterieller Kalibrieralgorithmus zur Anwendung mit dem neben GRACE-Daten auch Abflussmessungen einbezogen werden konnten. Die Modellkalibierung wurde weltweit für die 28 größten Flusseinzugsgebiete durchgeführt. In den meisten Fällen konnte eine verbesserte Berechnung von Wassermassenvariationen und Abflüssen erreicht werden. Hieraus ergeben sich, z.B. für tropische Regionen, größere saisonale Variationen. Die Ergebnisse führen zu einem verbesserten Verständnis hydrologischer Prozesse. Zum Schluss konnte die Robustheit der Ergebnisse gegenüber Fehlern in GRACE- und Abflussmessungen erfolgreich getestet werden. Nach den wichtigsten Schlussfolgerungen, die aus den Ergebnissen abgeleitet werden konnten, sind nicht nur Bodenfeuchte- und Schneespeicher, sondern auch Grundwasser- und Oberflächenwasserspeicher in Vergleiche von berechneten und GRACE-beobachteten Wassermassenvariationen einzubeziehen. Weiterhin sind neben Abflussmessungen zusätzlich Beobachtungen von weiteren hydrologischen Prozessen notwendig, um die Ergebnisse mit größerer Genauigkeit überprüfen zu können. Die Ergebnisse dieser Arbeit heben hervor, wie wertvoll GRACE-Daten für die großräumige Hydrologie sind und eröffnen eine Methode zur Verbesserung unseres Verständnisses des globalen Wasserkreislaufes.
2

Erweiterte Modellbildung zur Bestimmung von Positionszeitreihen global verteilter GPS-Stationen

Fritsche, Mathias 18 July 2013 (has links) (PDF)
Eine Vielzahl geophysikalischer Prozesse im System Erde gehen mit Massenverlagerungen einher. Änderungen in der Massenverteilung führen zu beobachtbaren Änderungen im Schwerefeld und Rotationsverhalten der Erde sowie zu einer Deformation der Erdkruste. Die messtechnische Erfassung dieser Größen erlaubt einen Rückschluss auf die beteiligten Massentransportprozesse und stellt damit eine Grundvoraussetzung für die Erdsystemforschung dar. Satellitengestützte Navigationssysteme wie z.B. das Global Positioning System (GPS) spielen in diesem Zusammenhang eine zentrale Rolle, denn sie ermöglichen eine präzise Positionsbestimmung auf globaler Ebene. Für die Bestimmung eines terrestrischen Referenzrahmens werden üblicherweise mittlere Koordinaten zu einer Referenzepoche sowie zugehörige lineare Änderungen mit der Zeit angenommen. Bei diesem Konzept führen alle nichtlinearen Stationsbewegungen, deren Effekte im Rahmen der Beobachtungsmodellierung nicht reduziert werden, zu Abweichungen gegenüber dem linearen Bewegungsmodell. Diese Abweichungen haben Einfluss auf die Positionszeitreihen der in Betracht gezogenen Stationen und erlauben einen Rückschluss auf die auflastinduzierenden Änderungen in der Massenverteilung. Die Bestimmung von Stationspositionszeitreihen mittels GPS bildet den Kern der vorliegenden Arbeit. Die Arbeit baut inhaltlich auf vier Publikationen auf, die sich unterschiedlichen Fragestellungen in Bezug auf die Positionsbestimmung mittels GPS widmen. Eine zusammenfassende Diskussion gibt einen Überblick über Massenvariationen im System Erde und auflastinduzierte Krustendeformation. Spezielle Aspekte in Bezug auf eine konsistente Modellierung von Massenvariationen und daraus abgeleiteter Deformationsanteile werden hier dargelegt. Praktische Untersuchungen erfolgen zu Änderungen in der Massenverteilung aufgrund von atmosphärischen Druckvariationen, Ozeanzirkulation und hydrologisch bedingten Wasserspeicheränderungen im Bereich der Kontinente. Der Einfluss ionosphärischer Terme höherer Ordnung auf GPS-Parameterschätzwerte wird untersucht. Diese Analyse erfolgt vor dem Hintergrund, dass bei der vermittelnden Ausgleichung generell auch systematische Effekte, die für sich genommen keine Stationspositionsänderung verursachen, trotzdem Einfluss auf geschätzte Stationskoordinaten haben. Die Sensitivität der GPS-Beobachtungen gegenüber der Auflastdeformation wird genutzt, modellierte Massenvariationen zu validieren. Mittels gegebener Massenvariationen werden Deformationszeitreihen abgeleitet. Für diese Zeitreihen werden im Zuge der Parameterschätzung Skalierungsfaktoren bestimmt und als Indikator für die Übereinstimmung zwischen modellierter und beobachteter Deformation gewertet. Änderungen der Massenverteilung im System Erde zeichnen sich unter anderem durch eine Schwerpunktverlagerung gegenüber der festen Erde aus. Wird die Massenverteilung durch eine sphärisch-harmonische Reihenentwicklung dargestellt, so sind die Terme ersten Grades mit der Schwerpunktverlagerung verknüpft. Die Grad-1-Anteile der Massenvariation können mittels satellitengravimetrischer Beobachtungen prinzipiell nicht bestimmt werden. Sie lassen sich aber mit Hilfe der GPS-Beobachtungen aus dem zugehörigen Deformationsanteil ermitteln. Der Einfluss systematischer Beobachtungsfehler auf diesem Inversionsansatz wird untersucht. Bei der Bestimmung globaler GPS-Lösungen werden die in den Beobachtungen enthaltenen Auflasteffektes prinzipiell auf alle simultan geschätzten Parameter abgebildet. Diese systematische Verfälschung erschwert die geophysikalische Interpretation von Stationspositionszeitreihen. Ein integrierter Ansatz wird entwickelt, um bestehende Vorinformation über verschiedene Massenvariationsprozesse bestmöglich einzubeziehen.
3

Simulationen hydrologischer Massenvariationen und deren Einfluss auf die Erdrotation / Simulations of hydrologigical mass variations and their influence on the Earth's rotation

Walter, Claudia 19 March 2008 (has links) (PDF)
Die gestiegene Messgenauigkeit der Erdrotationsparameter ermöglicht inzwischen eine Berücksichtigung von Sekundäreffekten, wie Einflüssen hydrologischer Massenvariationen. Variationen der Erdrotation durch hydrologische Massenvariationen sind bisher weniger gut als atmosphärische und ozeanische Beiträge erforscht. Zur Interpretation, Analyse und Zuordnung von Signalen in den Erdrotationsparamtern wurden mit einem Landoberflächenschema und einem lateralen Abflussmodell langjährige hydrologische Simulationen unter Antrieb aus verschiedenen globalen Atmosphärenmodellen durchgeführt. Diese Simulationen erlaubten die Durchführung von Sensitivitätsstudien über die Abhängigkeit simulierter hydrologischer Beiträge zur Erdrotation von den atmosphärischen Antrieben und der Modellphysik. Alle relevanten hydrologischen Größen wurden auf Plausibilität mit Beobachtungsdaten oder anderen Simulationsergebnissen validiert. Neben dem Beitrag der vertikalen Wasserbilanz wurde auch der Beitrag des lateralen Wassertransportes auf die Erdrotation explizit untersucht. Erstmalig konnte der hydrologische Bewegungsterm quantifiziert werden. Die simulierten hydrologischen Drehimpulsfunktionen wurden schließlich im Kontext des globalen Wasserkreislaufes den beobachteten Erdrotationsparametern gegenübergestellt. Es ergab sich eine besonders gute Übereinstimmung für die hydrologische [chi2]-Komponente mit Residuen aus Beobachtungen und simulierten atmosphärischen und ozeanischen Variationen der Erdrotation. / The increasing accuracy of observation of the Earth's rotation allows the consideration of so called secondary effects like the influence of hydrological mass redistributions. Variations of the Earth's rotation due to hydrological influences are yet less investigated than atmospheric and oceanic contributions. In order to analyse, interprete and associate signals in the parameters of the Earth's rotation, longtime hydrologic simulations were performed by forcing a land-surface scheme and a lateral discharge model with data of various global atmospheric models. By these simulations, the dependency of simulated hydrologic contributions to the variations of the Earth's rotation on atmospheric forcing and on the model physics was studied. All relevant hydrologic quantities were validated against observed or modelled values to evaluate their plausibility. In addition to the contribution of the vertical water balance to the variations of the Earth's rotation also the contribution of lateral water transport was explicitely investigated. For the first time the hydrologic motion term was quantified. Eventually, the simulated hydrological angular momentum functions were compared in the context of the global water cycle against observed parameters of the Earth's rotation. The hydrological component of [chi2] did show a very good agreement with residuals of observations and simulated atmospheric and oceanic variations of the Earth's rotation.
4

Erweiterte Modellbildung zur Bestimmung von Positionszeitreihen global verteilter GPS-Stationen

Fritsche, Mathias 18 June 2013 (has links)
Eine Vielzahl geophysikalischer Prozesse im System Erde gehen mit Massenverlagerungen einher. Änderungen in der Massenverteilung führen zu beobachtbaren Änderungen im Schwerefeld und Rotationsverhalten der Erde sowie zu einer Deformation der Erdkruste. Die messtechnische Erfassung dieser Größen erlaubt einen Rückschluss auf die beteiligten Massentransportprozesse und stellt damit eine Grundvoraussetzung für die Erdsystemforschung dar. Satellitengestützte Navigationssysteme wie z.B. das Global Positioning System (GPS) spielen in diesem Zusammenhang eine zentrale Rolle, denn sie ermöglichen eine präzise Positionsbestimmung auf globaler Ebene. Für die Bestimmung eines terrestrischen Referenzrahmens werden üblicherweise mittlere Koordinaten zu einer Referenzepoche sowie zugehörige lineare Änderungen mit der Zeit angenommen. Bei diesem Konzept führen alle nichtlinearen Stationsbewegungen, deren Effekte im Rahmen der Beobachtungsmodellierung nicht reduziert werden, zu Abweichungen gegenüber dem linearen Bewegungsmodell. Diese Abweichungen haben Einfluss auf die Positionszeitreihen der in Betracht gezogenen Stationen und erlauben einen Rückschluss auf die auflastinduzierenden Änderungen in der Massenverteilung. Die Bestimmung von Stationspositionszeitreihen mittels GPS bildet den Kern der vorliegenden Arbeit. Die Arbeit baut inhaltlich auf vier Publikationen auf, die sich unterschiedlichen Fragestellungen in Bezug auf die Positionsbestimmung mittels GPS widmen. Eine zusammenfassende Diskussion gibt einen Überblick über Massenvariationen im System Erde und auflastinduzierte Krustendeformation. Spezielle Aspekte in Bezug auf eine konsistente Modellierung von Massenvariationen und daraus abgeleiteter Deformationsanteile werden hier dargelegt. Praktische Untersuchungen erfolgen zu Änderungen in der Massenverteilung aufgrund von atmosphärischen Druckvariationen, Ozeanzirkulation und hydrologisch bedingten Wasserspeicheränderungen im Bereich der Kontinente. Der Einfluss ionosphärischer Terme höherer Ordnung auf GPS-Parameterschätzwerte wird untersucht. Diese Analyse erfolgt vor dem Hintergrund, dass bei der vermittelnden Ausgleichung generell auch systematische Effekte, die für sich genommen keine Stationspositionsänderung verursachen, trotzdem Einfluss auf geschätzte Stationskoordinaten haben. Die Sensitivität der GPS-Beobachtungen gegenüber der Auflastdeformation wird genutzt, modellierte Massenvariationen zu validieren. Mittels gegebener Massenvariationen werden Deformationszeitreihen abgeleitet. Für diese Zeitreihen werden im Zuge der Parameterschätzung Skalierungsfaktoren bestimmt und als Indikator für die Übereinstimmung zwischen modellierter und beobachteter Deformation gewertet. Änderungen der Massenverteilung im System Erde zeichnen sich unter anderem durch eine Schwerpunktverlagerung gegenüber der festen Erde aus. Wird die Massenverteilung durch eine sphärisch-harmonische Reihenentwicklung dargestellt, so sind die Terme ersten Grades mit der Schwerpunktverlagerung verknüpft. Die Grad-1-Anteile der Massenvariation können mittels satellitengravimetrischer Beobachtungen prinzipiell nicht bestimmt werden. Sie lassen sich aber mit Hilfe der GPS-Beobachtungen aus dem zugehörigen Deformationsanteil ermitteln. Der Einfluss systematischer Beobachtungsfehler auf diesem Inversionsansatz wird untersucht. Bei der Bestimmung globaler GPS-Lösungen werden die in den Beobachtungen enthaltenen Auflasteffektes prinzipiell auf alle simultan geschätzten Parameter abgebildet. Diese systematische Verfälschung erschwert die geophysikalische Interpretation von Stationspositionszeitreihen. Ein integrierter Ansatz wird entwickelt, um bestehende Vorinformation über verschiedene Massenvariationsprozesse bestmöglich einzubeziehen.
5

Zur Ermittlung geophysikalischer Massensignale mit Schwerefeldmissionen: Eine Analyse des gegenwärtigen Standes am Beispiel der Antarktis

Horwath, Martin 22 February 2008 (has links) (PDF)
Die neuen Schwerefeld-Satellitenmissionen CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) und GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) können wesentlich zur Erforschung und Beobachtung des Systems Erde beitragen. Die Antarktis als ein Schlüsselglied im globalen Klimasystem bietet dabei besondere Herausforderungen. GRACE hat hier das Potential, zeitliche Massenänderungen (unter anderem der Eismasse) zu beobachten. Methoden zur Auswertung der Missionsdaten befinden sich gegenwärtig in einem intensiven Entwicklungsprozess, zu dem die vorliegende Arbeit beitragen soll. Inhaltlicher Schwerpunkt ist die Nutzung von GRACE zur Ermittlung zeitlicher Massenvariationen in der Antarktis. Die Analysen erfolgen in erster Linie aus der Position eines Nutzers von Standard-Missionsprodukten, betreffen aber grundsätzlich den gesamten Auswerteprozess. Nach einer Einführung werden zunächst die Hintergründe der Arbeit ausgeführt (Kapitel 2), speziell die theoretischen Grundlagen zu Massen- und Schwerefeldvariationen, Phänomene geophysikalischer Massenvariationen und die neuen Schwerefeldmissionen mit ihrem Potential zur Beobachtung solcher Massenvariationen. Ein Hauptteil der Arbeit behandelt die Frage, welche Signale und Fehler in den Schwerefeldlösungen der Missionen enthalten sind (Kapitel 3). Zunächst werden dazu gegenwärtige Prozessierungskonzepte zur Erstellung von CHAMP- und GRACE-Schwerefeldlösungen skizziert und die GRACE-Monatslösungen des GeoForschungsZentrums Potsdam als ein Standard-GRACE-Produkt vorgestellt. Es folgen verschiedene Analysen zur Fehlerstruktur der Schwerefeldlösungen, wobei insbesondere die Fehlerstruktur von GRACE-Monatslösungen anhand ihres Zeitverhaltens empirisch untersucht werden. Als eine Ursache empirisch festgestellter, aber durch Fehlermodelle nicht vollständig beschriebener Fehlerstrukturen werden schließlich Alias-Effekte von unmodellierten zeitlichen Variationen auf die geschätzten räumlichen Variationen qualitativ und quantitativ beschrieben und diskutiert. Ein zweiter Hauptteil untersucht geophysikalische Rückschlüsse aus GRACE-Schwerefeldlösungen mit Anwendung auf die Schätzung antarktischer Eismassensignale (Kapitel 4). Methoden zur Schätzung von Massensignalen aus den Schwerefeldlösungen werden systematisch zusammengestellt und teilweise weiterentwickelt. Die praktische Anwendung dieser Methoden zur Schätzung von Eismassenänderungen des Antarktischen Eisschildes und seiner großen Eiseinzugsgebiete wird erklärt. Ein Schwerpunkt liegt auf der Untersuchung der unterschiedlichen Mechanismen, die zu Fehlern der geschätzten Massensignale führen, sowie auf der Abschätzung dieser Fehler. Im Lichte der gewonnenen Einsichten in die methodischen Unsicherheiten der angewandten Analysetechniken erfolgt schließlich die Präsentation und Diskussion der Ergebnisse, einschließlich eines Vergleichs mit bisher veröffentlichten Massenbilanzresultaten. Möglichkeiten zu methodischen Verbesserungen, die in den vorangegangenen Untersuchungen deutlich werden, aber über den Rahmen der Arbeit hinausgehen, werden in einem eigenen Kapitel (Kapitel 5) diskutiert. Dies betrifft sowohl solche Verbesserungen, die bereits auf der Basis der gegenwärtigen GRACE-Monatslösungen möglich sind, als auch Verbesserungen in der Generierung dieser Monatslösungen oder, allgemeiner, in der GRACE-Prozessierung. Die Kombination der GRACE-Daten mit komplementären Beobachtungen und Modellen spielt in den unterschiedlichen Stadien der GRACE-Datenanalyse eine Schlüsselrolle. In Bezug auf die Trennung antarktischer Massensignale werden Kombinationsstrategien nochmals gesondert diskutiert. Schließlich werden die Hauptergebnisse der Arbeit nochmals zusammengefasst und eingeordnet (Kapitel 6). / The new gravity field satellite missions CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) can provide essential contributions to the study and the monitoring of the Earth system. Hereby, Antarctica as a key element of the climate system offers particular challenges. GRACE has the potential to observe temporal variations of masses such as ice masses, in particular. Methods to analyse the mission data are currently in a process of intensive development. The present work aims to contribute to this process. The focus is on the use of GRACE to determine temporal mass variations in Antarctica. The analyses are carried out from the viewpoint of a standard product user. Nonetheless, they concern the entire process of GRACE data analysis. After an introduction, the background of the work is explained, in particular the theoretical fundamentals of mass and gravity field variations, the phenomena of geophysical mass variations and the new gravity field missions with their potential to observe these variations (chapter 2). One main part of the work (chapter 3) treats the question which signals and errors are contained in the missions' gravity field solutions (chapter 3). Current CHAMP and GRACE processing approaches are outlined. The GRACE monthly solutions by GeoForschungsZentrum Potsdam are introduced. Subsequently, different analyses about error structures of gravity field mission solutions are presented. In particular, an empirical analysis of time-variations of the GRACE monthly solutions reveals error structures which are not completely described by error models. As one cause of this discrepancy, alias effects of unmodelled temporal variations on the spatial patterns of the solutions are discussed qualitatively and quantitatively. Another main part of the work (chapter 4) investigates geophysical inferences from the GRACE monthly solutions, with Antarctica taken as a case study. Methods to estimate mass signals are systematised and partly enhanced. The practical applications of these methods for the estimation of Antarctic ice mass changes is explained. The different error mechanisms are investigated in detail, and corresponding errors are assessed. The results about Antarctic ice mass changes are then presented, compared to previous results and discussed in the light of the remaining methodological uncertainties. The studies reveal directions for methodological improvements, and so, related ideas are discussed in a separate chapter (chapter 5). They concern both the analysis of current GRACE monthly solutions and the generation of these solutions, or, more generally, the GRACE processing. The combination of GRACE data with complementary observations and models plays a key role in the different levels of GRACE data analysis. Combination strategies are, hence, once more discussed with regard to Antarctic mass signals. Finally, the main results of the work are summarised and discussed in a broader context.
6

Zur Ermittlung geophysikalischer Massensignale mit Schwerefeldmissionen: Eine Analyse des gegenwärtigen Standes am Beispiel der Antarktis

Horwath, Martin 20 December 2007 (has links)
Die neuen Schwerefeld-Satellitenmissionen CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) und GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) können wesentlich zur Erforschung und Beobachtung des Systems Erde beitragen. Die Antarktis als ein Schlüsselglied im globalen Klimasystem bietet dabei besondere Herausforderungen. GRACE hat hier das Potential, zeitliche Massenänderungen (unter anderem der Eismasse) zu beobachten. Methoden zur Auswertung der Missionsdaten befinden sich gegenwärtig in einem intensiven Entwicklungsprozess, zu dem die vorliegende Arbeit beitragen soll. Inhaltlicher Schwerpunkt ist die Nutzung von GRACE zur Ermittlung zeitlicher Massenvariationen in der Antarktis. Die Analysen erfolgen in erster Linie aus der Position eines Nutzers von Standard-Missionsprodukten, betreffen aber grundsätzlich den gesamten Auswerteprozess. Nach einer Einführung werden zunächst die Hintergründe der Arbeit ausgeführt (Kapitel 2), speziell die theoretischen Grundlagen zu Massen- und Schwerefeldvariationen, Phänomene geophysikalischer Massenvariationen und die neuen Schwerefeldmissionen mit ihrem Potential zur Beobachtung solcher Massenvariationen. Ein Hauptteil der Arbeit behandelt die Frage, welche Signale und Fehler in den Schwerefeldlösungen der Missionen enthalten sind (Kapitel 3). Zunächst werden dazu gegenwärtige Prozessierungskonzepte zur Erstellung von CHAMP- und GRACE-Schwerefeldlösungen skizziert und die GRACE-Monatslösungen des GeoForschungsZentrums Potsdam als ein Standard-GRACE-Produkt vorgestellt. Es folgen verschiedene Analysen zur Fehlerstruktur der Schwerefeldlösungen, wobei insbesondere die Fehlerstruktur von GRACE-Monatslösungen anhand ihres Zeitverhaltens empirisch untersucht werden. Als eine Ursache empirisch festgestellter, aber durch Fehlermodelle nicht vollständig beschriebener Fehlerstrukturen werden schließlich Alias-Effekte von unmodellierten zeitlichen Variationen auf die geschätzten räumlichen Variationen qualitativ und quantitativ beschrieben und diskutiert. Ein zweiter Hauptteil untersucht geophysikalische Rückschlüsse aus GRACE-Schwerefeldlösungen mit Anwendung auf die Schätzung antarktischer Eismassensignale (Kapitel 4). Methoden zur Schätzung von Massensignalen aus den Schwerefeldlösungen werden systematisch zusammengestellt und teilweise weiterentwickelt. Die praktische Anwendung dieser Methoden zur Schätzung von Eismassenänderungen des Antarktischen Eisschildes und seiner großen Eiseinzugsgebiete wird erklärt. Ein Schwerpunkt liegt auf der Untersuchung der unterschiedlichen Mechanismen, die zu Fehlern der geschätzten Massensignale führen, sowie auf der Abschätzung dieser Fehler. Im Lichte der gewonnenen Einsichten in die methodischen Unsicherheiten der angewandten Analysetechniken erfolgt schließlich die Präsentation und Diskussion der Ergebnisse, einschließlich eines Vergleichs mit bisher veröffentlichten Massenbilanzresultaten. Möglichkeiten zu methodischen Verbesserungen, die in den vorangegangenen Untersuchungen deutlich werden, aber über den Rahmen der Arbeit hinausgehen, werden in einem eigenen Kapitel (Kapitel 5) diskutiert. Dies betrifft sowohl solche Verbesserungen, die bereits auf der Basis der gegenwärtigen GRACE-Monatslösungen möglich sind, als auch Verbesserungen in der Generierung dieser Monatslösungen oder, allgemeiner, in der GRACE-Prozessierung. Die Kombination der GRACE-Daten mit komplementären Beobachtungen und Modellen spielt in den unterschiedlichen Stadien der GRACE-Datenanalyse eine Schlüsselrolle. In Bezug auf die Trennung antarktischer Massensignale werden Kombinationsstrategien nochmals gesondert diskutiert. Schließlich werden die Hauptergebnisse der Arbeit nochmals zusammengefasst und eingeordnet (Kapitel 6). / The new gravity field satellite missions CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) can provide essential contributions to the study and the monitoring of the Earth system. Hereby, Antarctica as a key element of the climate system offers particular challenges. GRACE has the potential to observe temporal variations of masses such as ice masses, in particular. Methods to analyse the mission data are currently in a process of intensive development. The present work aims to contribute to this process. The focus is on the use of GRACE to determine temporal mass variations in Antarctica. The analyses are carried out from the viewpoint of a standard product user. Nonetheless, they concern the entire process of GRACE data analysis. After an introduction, the background of the work is explained, in particular the theoretical fundamentals of mass and gravity field variations, the phenomena of geophysical mass variations and the new gravity field missions with their potential to observe these variations (chapter 2). One main part of the work (chapter 3) treats the question which signals and errors are contained in the missions' gravity field solutions (chapter 3). Current CHAMP and GRACE processing approaches are outlined. The GRACE monthly solutions by GeoForschungsZentrum Potsdam are introduced. Subsequently, different analyses about error structures of gravity field mission solutions are presented. In particular, an empirical analysis of time-variations of the GRACE monthly solutions reveals error structures which are not completely described by error models. As one cause of this discrepancy, alias effects of unmodelled temporal variations on the spatial patterns of the solutions are discussed qualitatively and quantitatively. Another main part of the work (chapter 4) investigates geophysical inferences from the GRACE monthly solutions, with Antarctica taken as a case study. Methods to estimate mass signals are systematised and partly enhanced. The practical applications of these methods for the estimation of Antarctic ice mass changes is explained. The different error mechanisms are investigated in detail, and corresponding errors are assessed. The results about Antarctic ice mass changes are then presented, compared to previous results and discussed in the light of the remaining methodological uncertainties. The studies reveal directions for methodological improvements, and so, related ideas are discussed in a separate chapter (chapter 5). They concern both the analysis of current GRACE monthly solutions and the generation of these solutions, or, more generally, the GRACE processing. The combination of GRACE data with complementary observations and models plays a key role in the different levels of GRACE data analysis. Combination strategies are, hence, once more discussed with regard to Antarctic mass signals. Finally, the main results of the work are summarised and discussed in a broader context.
7

Simulationen hydrologischer Massenvariationen und deren Einfluss auf die Erdrotation

Walter, Claudia 29 November 2007 (has links)
Die gestiegene Messgenauigkeit der Erdrotationsparameter ermöglicht inzwischen eine Berücksichtigung von Sekundäreffekten, wie Einflüssen hydrologischer Massenvariationen. Variationen der Erdrotation durch hydrologische Massenvariationen sind bisher weniger gut als atmosphärische und ozeanische Beiträge erforscht. Zur Interpretation, Analyse und Zuordnung von Signalen in den Erdrotationsparamtern wurden mit einem Landoberflächenschema und einem lateralen Abflussmodell langjährige hydrologische Simulationen unter Antrieb aus verschiedenen globalen Atmosphärenmodellen durchgeführt. Diese Simulationen erlaubten die Durchführung von Sensitivitätsstudien über die Abhängigkeit simulierter hydrologischer Beiträge zur Erdrotation von den atmosphärischen Antrieben und der Modellphysik. Alle relevanten hydrologischen Größen wurden auf Plausibilität mit Beobachtungsdaten oder anderen Simulationsergebnissen validiert. Neben dem Beitrag der vertikalen Wasserbilanz wurde auch der Beitrag des lateralen Wassertransportes auf die Erdrotation explizit untersucht. Erstmalig konnte der hydrologische Bewegungsterm quantifiziert werden. Die simulierten hydrologischen Drehimpulsfunktionen wurden schließlich im Kontext des globalen Wasserkreislaufes den beobachteten Erdrotationsparametern gegenübergestellt. Es ergab sich eine besonders gute Übereinstimmung für die hydrologische [chi2]-Komponente mit Residuen aus Beobachtungen und simulierten atmosphärischen und ozeanischen Variationen der Erdrotation. / The increasing accuracy of observation of the Earth's rotation allows the consideration of so called secondary effects like the influence of hydrological mass redistributions. Variations of the Earth's rotation due to hydrological influences are yet less investigated than atmospheric and oceanic contributions. In order to analyse, interprete and associate signals in the parameters of the Earth's rotation, longtime hydrologic simulations were performed by forcing a land-surface scheme and a lateral discharge model with data of various global atmospheric models. By these simulations, the dependency of simulated hydrologic contributions to the variations of the Earth's rotation on atmospheric forcing and on the model physics was studied. All relevant hydrologic quantities were validated against observed or modelled values to evaluate their plausibility. In addition to the contribution of the vertical water balance to the variations of the Earth's rotation also the contribution of lateral water transport was explicitely investigated. For the first time the hydrologic motion term was quantified. Eventually, the simulated hydrological angular momentum functions were compared in the context of the global water cycle against observed parameters of the Earth's rotation. The hydrological component of [chi2] did show a very good agreement with residuals of observations and simulated atmospheric and oceanic variations of the Earth's rotation.

Page generated in 0.0928 seconds