• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthese, Charakterisierung und elektrochemische Eigenschaften nanostrukturierter, perowskitischer Elektrodenmaterialien

Franke, Daniela 24 September 2013 (has links) (PDF)
La0.6Ca0.4Mn0.8Ni0.2O3-, La0.6Ca0.4Mn0.8Fe0.2O3- und La0.75Ca0.25Mn0.5Fe0.5O3-Volumenmaterialien wurden im potentiometrischen Messaufbau bereits erfolgreich auf ihre NO-Sensitivität getestet. Keramischen Nanomaterialien werden generell eine Reihe neuer oder verbesserter Eigenschaften (verbessertes Sinterverhalten, erhöhte NOx-Sensitivität, höhere Leitfähigkeit) zugesprochen. La0.6Ca0.4Mn0.8Ni0.2O3, La0.6Ca0.4Mn0.8Fe0.2O3 und La0.75Ca0.25Mn0.5Fe0.5O3 wurden mittels PVA/Sucrose-Methode, Aktivkohlemethode und Fällungssynthese als Nanomaterialien sowie mit Festkörperreaktion als Volumenmaterialien dargestellt und mit typischen Charakterisierungsmethoden untersucht. Die Materialien wurden in verschiedenen Schichtdicken auf YSZ-Substrate aufgetragen und potentiometrisch sowie impedanzspektroskopisch auf ihre NO-Sensitivität und die Querempfindlichkeit gegenüber NO2 und Propylen geprüft. Potentiometrische Messungen im NO-Gasstrom ergeben eine Abhängigkeit der NO-Sensitivität von der Partikelgröße, der Schichtdicke und der Beschichtungsmethode. Impedanzspektroskopische Messungen an beidseitig beschichteten YSZ-Substraten zeigen ebenfalls eine Abhängigkeit des Zellwiderstands von der NO-Konzentration und der Partikelgröße. Die Nanomaterialien zeigen bei unterschiedlichen Sauerstoffpartialdrücken im untersuchten Temperaturbereich (300°C bis 850°C) höhere Leitfähigkeiten als die Volumenmaterialien gleicher Zusammensetzung. Dieses Verhalten wird mit dem höheren Sauerstoffaustausch der Nanomaterialien in Verbindung gebracht, der zur Erzeugung zusätzlicher Defekte in der Kristallstruktur führt. Die Nanostruktur und somit eine entsprechend hohe Leitfähigkeit bleiben bei hohen Sintertemperaturen (T > 1000°C), die der Herstellung gasdichter Presslinge dienen, erhalten. XANES- und Photoelektronenspektroskopie wurden verwendet, um die Punktdefekte zu definieren.
2

Synthese, Charakterisierung und elektrochemische Eigenschaften nanostrukturierter, perowskitischer Elektrodenmaterialien

Franke, Daniela 30 November 2012 (has links)
La0.6Ca0.4Mn0.8Ni0.2O3-, La0.6Ca0.4Mn0.8Fe0.2O3- und La0.75Ca0.25Mn0.5Fe0.5O3-Volumenmaterialien wurden im potentiometrischen Messaufbau bereits erfolgreich auf ihre NO-Sensitivität getestet. Keramischen Nanomaterialien werden generell eine Reihe neuer oder verbesserter Eigenschaften (verbessertes Sinterverhalten, erhöhte NOx-Sensitivität, höhere Leitfähigkeit) zugesprochen. La0.6Ca0.4Mn0.8Ni0.2O3, La0.6Ca0.4Mn0.8Fe0.2O3 und La0.75Ca0.25Mn0.5Fe0.5O3 wurden mittels PVA/Sucrose-Methode, Aktivkohlemethode und Fällungssynthese als Nanomaterialien sowie mit Festkörperreaktion als Volumenmaterialien dargestellt und mit typischen Charakterisierungsmethoden untersucht. Die Materialien wurden in verschiedenen Schichtdicken auf YSZ-Substrate aufgetragen und potentiometrisch sowie impedanzspektroskopisch auf ihre NO-Sensitivität und die Querempfindlichkeit gegenüber NO2 und Propylen geprüft. Potentiometrische Messungen im NO-Gasstrom ergeben eine Abhängigkeit der NO-Sensitivität von der Partikelgröße, der Schichtdicke und der Beschichtungsmethode. Impedanzspektroskopische Messungen an beidseitig beschichteten YSZ-Substraten zeigen ebenfalls eine Abhängigkeit des Zellwiderstands von der NO-Konzentration und der Partikelgröße. Die Nanomaterialien zeigen bei unterschiedlichen Sauerstoffpartialdrücken im untersuchten Temperaturbereich (300°C bis 850°C) höhere Leitfähigkeiten als die Volumenmaterialien gleicher Zusammensetzung. Dieses Verhalten wird mit dem höheren Sauerstoffaustausch der Nanomaterialien in Verbindung gebracht, der zur Erzeugung zusätzlicher Defekte in der Kristallstruktur führt. Die Nanostruktur und somit eine entsprechend hohe Leitfähigkeit bleiben bei hohen Sintertemperaturen (T > 1000°C), die der Herstellung gasdichter Presslinge dienen, erhalten. XANES- und Photoelektronenspektroskopie wurden verwendet, um die Punktdefekte zu definieren.

Page generated in 0.0722 seconds