• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pillar Gate Devices for Gas Sensing

Fallqvist, Amie January 2009 (has links)
<p>Chemical gas sensors can be used in a variety of applications such as process control, security systems and medical diagnosis. In the research for new functions and new sensing materials a “breadboard” would be useful. A technique that has been investigated for such a purpose is the grid-gate device which is a metal-oxide-semiconductor (MOS) based gas sensor. It is a MOS capacitor consisting of a passive grid-gate with depositions of sensing materials overlapping the grid. The measuring is carried out with a light addressable method called scanning light pulse technique (SLPT) which enables the detection of spatially distributed gas response.</p><p>A development of the grid-gate sensor would be to separate the sensing materials from the chip. In this thesis the aim was to see if this was possible by depositing the sensing material on a slide of micro pillars which was put on top of a biased grid-gate chip.</p><p>The test was made with palladium depositions in an ambient of synthetic air and 2500 ppm hydrogen, and the measuring technique was SLPT as for the preceding device.</p><p>The result of the test was that the new device showed a combined gas response of both charge content shift at flat-band voltage and at inversion voltages. The conclusion is therefore that the sensing material can be separated from the grid-gate chip and that the response will be caused by several mechanisms. The two-dimensional image response utilized for the preceding grid-gate device will instead be a multi-dimensional response consisting of the curve for the charge content shift at every measuring position.</p>
2

Pillar Gate Devices for Gas Sensing

Fallqvist, Amie January 2009 (has links)
Chemical gas sensors can be used in a variety of applications such as process control, security systems and medical diagnosis. In the research for new functions and new sensing materials a “breadboard” would be useful. A technique that has been investigated for such a purpose is the grid-gate device which is a metal-oxide-semiconductor (MOS) based gas sensor. It is a MOS capacitor consisting of a passive grid-gate with depositions of sensing materials overlapping the grid. The measuring is carried out with a light addressable method called scanning light pulse technique (SLPT) which enables the detection of spatially distributed gas response. A development of the grid-gate sensor would be to separate the sensing materials from the chip. In this thesis the aim was to see if this was possible by depositing the sensing material on a slide of micro pillars which was put on top of a biased grid-gate chip. The test was made with palladium depositions in an ambient of synthetic air and 2500 ppm hydrogen, and the measuring technique was SLPT as for the preceding device. The result of the test was that the new device showed a combined gas response of both charge content shift at flat-band voltage and at inversion voltages. The conclusion is therefore that the sensing material can be separated from the grid-gate chip and that the response will be caused by several mechanisms. The two-dimensional image response utilized for the preceding grid-gate device will instead be a multi-dimensional response consisting of the curve for the charge content shift at every measuring position.
3

Porphyrins based detection of NH3 and CO, using field effect grid gate devices

Sánchez Reátegui, Rafael January 2010 (has links)
Porphyrins consist of twenty-atom rings containing four nitrogen atoms and can be used as sensor to detect odours and gases. This thesis investigates whether or not porphyrins can be used as functional materials on grid gate devices.  Drops of PVC embedded porphyrins were deposited on the surface of a grid gate which is a Metal Oxide Semiconductor (MOS) capacitor. In order to detect the gas sensing properties of the porphyrins a light addressable method called Scanning Light Pulse Technique (SLPT) has been used. Drops of porphyrins were deposited with a stretched capillary tube (1 mm diameter). The MOS capacitor has been exposed to nitrogen atmosphere as reference environment, while the target gases were carbon monoxide (100 ppm) and ammonia (500 ppm). The result from the eight porphyrins is that one of them [Pt(II) TPP] has a response for both gases, ammonia induces a change in both the work function and surface resistance, while the carbon monoxide induces only a change in the surface resistance.
4

Sensor de imagem para detecção de gases. / Image sensor for detection of gases.

Mauro Sergio Braga 28 February 2008 (has links)
O objetivo do presente trabalho é o desenvolvimento de um dispositivo MOS como sensor de imagem química para a detecção e classificação de gases de hidrogênio e amônia através da técnica de escaneamento de luz pulsada (TELP). O dispositivo MOS foi fabricado sobre substrato de silício (100) e resistividade de 10 -cm. A porta do dispositivo foi constituída de um eletrodo bimetálico de Au-Pd com espessura nanométrica. Foi proposto um sistema automático de posicionamento X Y para o escaneamento do feixe de luz pulsada baseado no controle PID e no software Labview®. O processo de aquisição de dados foi também automatizado via instrumentação virtual definida pelo software Labview®. A partir das curvas CxV dos capacitores MOS foram extraídos os parâmetros estruturais dos dispositivos mostrando-se estes valores concordantes com os valores definidos no projeto inicial. Adicionalmente foi determinada a largura máxima da camada de depleção sendo este parâmetro importante na sensibilidade da resposta do sensor. O dispositivo MOS em ambiente inerte (N2) apresentou máxima sensibilidade de fotocorrente para polarização de 0,6 V correspondente à máxima largura de depleção. Em ambientes de H2 e NH3, o máximo de sensibilidade foi deslocado para tensões menores a 0,6 V atribuindo-se este fato à adsorção de átomos de Hidrogênio na interface metal/SiO2. As imagens químicas obtidas a partir da resposta do sensor MOS em modo de operação TELP para ambientes de H2 e NH3, respectivamente, apresentaram padrões característicos a cada tipo de gás independentemente da concentração utilizada permitindo a classificação plena destes gases. Os resultados obtidos no presente trabalho sugerem a possibilidade de implementação de um sistema de nariz eletrônico apenas utilizando um único sensor. / The aim of the present work is the development of a MOS device as a sensor of chemical image, for the detection and classification of hydrogen and ammonia gases, through the Scanning Light Pulse Technique (SLPT). The MOS device was fabricated onto silicon bulk (100) and resistivity of 10 -cm. The gate of the device was built from an Au-Pd bimetallic electrode, with nanometric thickness. It was proposed an X Y automatic position system for scanning the light pulsed beam, based on the PID control and on the Labview® software. The data acquisition process was also automated via virtual instrumentation defined by the Labview® software. From the C x V characteristic curves of the MOS capacitors, the device structural parameters were extracted, showing accordance with values defined in the initial project. Furthermore, it was determined the maximum depletion layer width. This parameter is important for the sensibility response of the sensor. The MOS device, in inert environment (N2), has shown photocurrent maximum sensibility for 0,6 V polarization, corresponding to the maximum depletion layer width. In H2 and NH3 environments, the maximum sensibility was dislocated for voltages lower than 0,6V, attributing it to the hydrogen atom adsorption at the metal/SiO2 interface. The chemical images obtained from the MOS sensor response, in SLPT operation mode for H2 and NH3 environments, respectively, showed characteristic patterns to each kind of gas, independent of the concentration used, allowing the complete classification of these gases. The results obtained in the present work suggest the possibility of implementing an electronic nose system, using only one sensor.
5

Sensor de imagem para detecção de gases. / Image sensor for detection of gases.

Braga, Mauro Sergio 28 February 2008 (has links)
O objetivo do presente trabalho é o desenvolvimento de um dispositivo MOS como sensor de imagem química para a detecção e classificação de gases de hidrogênio e amônia através da técnica de escaneamento de luz pulsada (TELP). O dispositivo MOS foi fabricado sobre substrato de silício (100) e resistividade de 10 -cm. A porta do dispositivo foi constituída de um eletrodo bimetálico de Au-Pd com espessura nanométrica. Foi proposto um sistema automático de posicionamento X Y para o escaneamento do feixe de luz pulsada baseado no controle PID e no software Labview®. O processo de aquisição de dados foi também automatizado via instrumentação virtual definida pelo software Labview®. A partir das curvas CxV dos capacitores MOS foram extraídos os parâmetros estruturais dos dispositivos mostrando-se estes valores concordantes com os valores definidos no projeto inicial. Adicionalmente foi determinada a largura máxima da camada de depleção sendo este parâmetro importante na sensibilidade da resposta do sensor. O dispositivo MOS em ambiente inerte (N2) apresentou máxima sensibilidade de fotocorrente para polarização de 0,6 V correspondente à máxima largura de depleção. Em ambientes de H2 e NH3, o máximo de sensibilidade foi deslocado para tensões menores a 0,6 V atribuindo-se este fato à adsorção de átomos de Hidrogênio na interface metal/SiO2. As imagens químicas obtidas a partir da resposta do sensor MOS em modo de operação TELP para ambientes de H2 e NH3, respectivamente, apresentaram padrões característicos a cada tipo de gás independentemente da concentração utilizada permitindo a classificação plena destes gases. Os resultados obtidos no presente trabalho sugerem a possibilidade de implementação de um sistema de nariz eletrônico apenas utilizando um único sensor. / The aim of the present work is the development of a MOS device as a sensor of chemical image, for the detection and classification of hydrogen and ammonia gases, through the Scanning Light Pulse Technique (SLPT). The MOS device was fabricated onto silicon bulk (100) and resistivity of 10 -cm. The gate of the device was built from an Au-Pd bimetallic electrode, with nanometric thickness. It was proposed an X Y automatic position system for scanning the light pulsed beam, based on the PID control and on the Labview® software. The data acquisition process was also automated via virtual instrumentation defined by the Labview® software. From the C x V characteristic curves of the MOS capacitors, the device structural parameters were extracted, showing accordance with values defined in the initial project. Furthermore, it was determined the maximum depletion layer width. This parameter is important for the sensibility response of the sensor. The MOS device, in inert environment (N2), has shown photocurrent maximum sensibility for 0,6 V polarization, corresponding to the maximum depletion layer width. In H2 and NH3 environments, the maximum sensibility was dislocated for voltages lower than 0,6V, attributing it to the hydrogen atom adsorption at the metal/SiO2 interface. The chemical images obtained from the MOS sensor response, in SLPT operation mode for H2 and NH3 environments, respectively, showed characteristic patterns to each kind of gas, independent of the concentration used, allowing the complete classification of these gases. The results obtained in the present work suggest the possibility of implementing an electronic nose system, using only one sensor.

Page generated in 0.0964 seconds