Spelling suggestions: "subject:"canning tunneling icroscopy"" "subject:"canning tunneling amicroscopy""
261 |
Oxygen and CO on the Pt3Sn(111) and Pt3Sn(110) surfaces / Sauerstoff und CO auf den Pt3Sn(111) und Pt3Sn(110) OberflächenHoheisel, Martin 15 November 2002 (has links)
The high temperature adsorption of oxygen and the room temperature adsorption of CO on the Pt3Sn(111) and Pt3Sn(110) surfaces have been investigated by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). Beforehand the structure of the clean surfaces has been reviewed.
After exposure to several 1000 L O2 at sample temperatures of about 750 K on both Pt3Sn(111) and (110) an ultra-thin Sn-O surface layer is formed. For the (111) X-ray photoelectron spectroscopy (XPS) indicates that this layer does not yet exhibit oxide properties. STM topographs of the Sn-O phase show on both surfaces meshes of highly corrugated protrusions commensurate with the substrate. In the case of the (111), after additional thermal annealing with STM and LEED a (4 × 4) reconstruction is observed, that is due to a (2 × 2) supermesh of depressions in the p(2 × 2) mesh of protrusions. This structure is similar to findings reported for the oxidation of Sn/Pt(111) surface alloys. X-ray photoelectron diffraction (XPD) measurements in comparison with simulations yield a tentative model for the (111) Sn-O layer.
On the Pt3Sn(110) surface after oxygen exposure a c(2 × 2) hexagonal grid of protrusions with regard to the (2 × 1) substrate is observed with STM and LEED. STM reveals the existence of domains due to two equivalent positions of the Sn-O layer relative to the substrate. The domain boundaries zigzag around the [1-10] direction. The Sn-O layer can on both surfaces be removed by thermal annealing to more than 1050 K.
After CO adsorption at room temperature on both Pt3Sn(111) and (110) adsorbate structures are observable with the STM. On the (111) two different types of structures are found: ordered patches of protrusions and unordered clusters. These structures are seen only on (√3 × √3)R30° substrate regions, not on p(2 × 2) regions. Surprisingly on the (110) the CO molecules mostly arrange in dimers. For both (111) and (110) saturation coverage is already reached at about 30% of a closed monolayer. The CO can be desorbed by slightly heating the samples to about 400 K. STM topographs show that on both surfaces CO adsorbes in Pt sites, not on Sn.
It was possible to observe the CO adsorption on the (110) directly live with the STM. The observed adsorption processes hint to a dimer formation mechanism where a preadsorbed monomer and a CO molecule form the gas phase or a precursor phase stick together.
When on partially Sn-O phase covered Pt3Sn(111) and (110) surfaces CO is adsorbed at room temperature, the respective structures coexist. Neither is CO observed on the Sn-O phase nor does a reaction between CO and O occur.
|
262 |
The atomic structure of the clean and adsorbate covered Ir(110) surface / Die atomare Struktur der reinen und adsorbatbedeckten Ir(110) OberflächeKuntze, Jens 26 September 2000 (has links)
The adsorption and coadsorption of sulfur and oxygen on the Ir(110) surface was investigated by scanning tunneling
microscopy (STM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). The clean
Ir(110) surface forms alternating (331) and (33-1) minifacets, resulting in a mesoscopically rippled surface. Upon
chemisorption of sulfur or oxygen and subsequent annealing, the surface structure is changed. In the following, the
results concerning sulfur and oxygen adsorption will be summarized before addressing the coadsorption system.
Sulfur adsorption: At sulfur coverages of 0.1-0.2 ML, the Ir(110) surface adopts a (1x2) missing-row configuration
similar to clean Au(110) and Pt(110). The sulfur-stabilized Ir(110)-(1x2) does not show any evidence for the
preference of (111) faceted steps, and consequently does not form a mesoscopic fish-scale pattern. The latter was
observed on the (110) surfaces of Au and Pt, and was found to be driven by the preference for (111) step facets. On
Ir(110), no such preference seems to exist, since (331) step facets are frequently observed. With respect to the
adsorbed sulfur, no extended islands are observed, indicating repulsive adsorbate-adsorbate interactions.
At sulfur coverages near 0.5 ML, a p(2x2) structure with p2mg (glide-plane) symmetry is observed. The adsorption site
and structural model derived by STM are compatible with an earlier LEED analysis of that structure: S adsorbs in
threefold coordinated fcc hollow sites above the (111) facets formed by the non-missing substrate rows.
At coverages higher than 0.5 ML, a c(2x4) LEED pattern with additional faint streaks in the [-110] azimuth is observed.
STM reveals that the streaks are due to pairs of sulfur atoms (dimers, for brevity) in a second adsorbate layer, that can
be desorbed by heating to 1100 K. A structural model is derived on the basis of the STM results, showing the dimer
atoms in on-top positions over sulfur atoms of the first adsorbate layer. When the surface is completely covered by the
dimers, the surface is saturated at 0.75 ML.
Oxygen adsorption: In agreement with earlier reports, oxygen adsorption and subsequent annealing to 700-900 K results
in an unreconstructed (1x1) surface, covered by a c(2x2)-O overlayer at 0.5 ML coverage.
Coadsorption of oxygen on an S-precovered surface (S-coverage below 0.5 ML) leads to a phase separation of the
adsorbates (competitive adsorption). At low coverages, oxygen forms a p(2x2)-O phase, whereas at higher
O-coverages a compression into a (1x2)-O phase is observed. Postannealing the (1x2)-O phase at 900 K in vacuum
leads to a reduction of the sulfur concentration, indicating sulfur oxidation. Interestingly, the p(2x2)-O phase does not
seem to be reactive, according to the AES results. A possible explanation may be that the more densely packed
(1x2)-O phase can be regarded as an activated structure. This is also supported by the STM results.
At S-coverages above 0.5 ML, the surface is completely poisoned with respect to oxygen adsorption. Nevertheless,
heating the sulfur saturated Ir(110)-c(2x4)-S structure in an oxygen atmosphere, the sulfur concentration gradually
drops to zero. At intermediate stages of this oxidation process, island formation is observed by STM, but the underlying
formation processes remain to be resolved.
|
263 |
Probing Light-Matter Interactions in Plasmonic NanotipsSchröder, Benjamin 14 July 2020 (has links)
No description available.
|
264 |
Surface-confined 2D polymerization of a brominated copper-tetraphenylporphyrin on Au(111)Smykalla, Lars, Shukrynau, Pavel, Korb, Marcus, Lang, Heinrich, Hietschold, Michael 22 April 2015 (has links)
A coupling-limited approach for the Ullmann reaction-like on-surface synthesis of a two-dimensional covalent organic network starting from a halogenated metallo-porphyrin is demonstrated. Copper-octabromo-tetraphenylporphyrin molecules can diffuse and self-assemble when adsorbed on the inert Au(111) surface. Splitting-off of bromine atoms bonded at the macrocyclic core of the porphyrin starts at room temperature after the deposition and is monitored by X-ray photoelectron spectroscopy for different annealing steps. Direct coupling between the reactive carbon sites of the molecules is, however, hindered by the molecular shape. This leads initially to an ordered non-covalently interconnected supramolecular structure. Further heating to 300 °C and an additional hydrogen dissociation step is required to link the molecular macrocycles via a phenyl group and form large ordered polymeric networks. This approach leads to a close-packed covalently bonded network of overall good quality. The structures are characterized using scanning tunneling microscopy. Different kinds of lattice defects and, furthermore, the impact of polymerization on the HOMO–LUMO gap are discussed. Density functional theory calculations corroborate the interpretations and give further insight into the adsorption of the debrominated molecule on the surface and the geometry and coupling reaction of the polymeric structure. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
265 |
Tunneling spectroscopy of highly ordered organic thin filmsTörker, Michael 23 April 2003 (has links)
In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data were recorded on monolayer and submonolayer PTCDA films. Measurements on closed PTCDA layers at different fixed tip sample separations revealed a peak +0.95V. Other measurements performed consecutively on a PTCDA island and on uncovered Au(100) areas showed that this peak is indeed caused by the PTCDA molecules. Another set of consecutive measurements on herringbone and square phase PTCDA islands indicates that in the normalized differential conductivity the peak shape and peak position depend on the molecular arrangement. The STS data are compared to UPS and IPES results, already published. In the case of highly ordered films of HBC on Au(100) it was possible to derive the energetic positions of the HBC frontier orbitals and the energies of the molecular states next to these frontier orbitals from Tunneling Spectroscopy measurements. These measurements were performed using two different tip materials. The results are compared to UPS measurements, to theoretical calculations of the electronic conductance based on a combination of the Landauer transport formalism with a density-functional-parametrized tight-binding scheme within the Local Density Approximation (LDA) as well as semiempirical quantum chemistry calculations. / Für die hier dargestelleten Arbeiten wurde ein Au(100) Einkristall als Substrat für die organische Molekularstrahlepitaxie verwendet. Hochgeordnete organische Dünnschichten der Moleküle 3,4,9,10-Perylen-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Hexa-peri-hexabenzo-coronen (HBC) sowie organisch-organische Heteroschichten wurden auf der Au(100) Oberfläche abgeschieden. Die Struktur der Schichten wurde mittels Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) untersucht. Tunnelspektroskopiedaten wurden für Monolagen sowie Submonolagen von PTCDA aufgenommen. Messungen an geschlossenen PTCDA Filmen zeigen für verschiedene Probe-Spitze-Abstände ein Maximum in der normierten differentiellen Leitfähigkeit bei +0.95V. Aufeinanderfolgende Messungen auf PTCDA-Inseln und unbedeckten Gebieten der Au(100) Oberfläche zeigen eindeutig, dass dieses Maximum auf die PTCDA Moleküle zurückzuführen ist. Weitere Messungen an PTCDA Inseln unterschiedlicher Struktur (Fischgrätenstruktur bzw. quadratische Struktur) belegen einen Zusammenhang zwischen der Anordnung der Moleküle und der Peakposition bzw. Peakform in der normierten differentiellen Leitfähigkeit. Die STS Daten werden mit UPS und IPES Ergebnissen aus der Literatur verglichen. Im Falle hochgeordneter HBC Schichten auf Au(100) war es möglich, neben dem höchsten besetzten und niedrigsten unbesetzten Molekülorbital auch die energetische Position der jeweils nächsten Orbitale zu bestimmen. Diese Messungen wurden mit zwei unterschiedlichen Spitzenmaterialien durchgeführt. Die Ergebnisse für HBC auf Au(100) werden mit UPS Daten sowie mit theoretischen Rechnungen verglichen.
|
266 |
Ordering in weakly bound molecular layers: organic-inorganic and organic-organic heteroepitaxyMannsfeld, Stefan 23 September 2004 (has links)
It is an aim of this work to provide insight into the energetic influence on the ordering of molecular thin films on crystalline substrates. Here, the term substrate either refers to inorganic crystal surfaces or highly ordered layers of another organic molecular species. In order to calculate the total interface potential of extended molecular domains, a new calculation technique (GRID technique) is developed in the first part of this work. Compared to the standard approach, this method accelerates the potential calculation drastically (times 10000). The other parts of the thesis are dedicated to the comparison of experimental results (obtained by scanning tunneling microscopy and electron diffraction) to the optimal layer structure as predicted by optimization calculations. Potential calculations which are performed for the system perylenetetracarboxylicdianhydride (PTCDA) on graphite demonstrate that point-on-line coincident structures correspond to energetically favorable alignments of the molecular lattice with respect to the substrate lattice. The capability of the GRID technique to predict the optimal layer structure is demonstrated for the system peri-hexabenzocoronene (HBC) on graphite. The organic-organic heteroepitaxy system PTCDA on HBC on graphite is investigated in order to clarify to which extent the ordering mechanism there differs from that of the organic-inorganic heteroepitaxy system PTCDA on graphite. As a result of this investigation, a new type of epitaxy, i.e., substrate induced ordering is found. This new epitaxy type is governed by the inner structure of the substrate lattice unit cell. Here, the substrate surface is a layer of organic molecules itself, hence the substrate surface unit cell does indeed exhibit a complex inner structure. A generalized classification scheme for epitaxial growth incorporating this new type of epitaxy is proposed. In the last chapter, the structure of the first layers of titanylphthalocyanine (TiOPc) on Au(111) is investigated and compared to potential optimization calculations. The correspondence of experimental and theoretical results provides evidence that the GRID technique can, in principle, also be applied to molecular layers on metal surfaces. / Das Ziel der vorliegenden Arbeit ist es, Einblicke in die energetischen Einflüsse, die zur Ausbildung der Schichtstruktur organischer Moleküle auf kristallinen Substraten führen, zu geben. Diese Substrate sind entweder Oberflächen anorganische Kristalle oder selbst hochgeordnete Molekülschichten. Um das totale Grenzflächenpotential ausgedehnter Moleküldomänen berechnen zu können, wird im ersten Teil der Arbeit eine neue Berechnungsmethode (GRID Technik) vorgestellt. Im Vergleich mit herkömmlichen Berechnungsmethoden auf der Basis molekülmechanischer Kraftfelder ist diese neue Methode daher um ein Vielfaches schneller (Faktor 100000). Die folgenden Teile der Arbeit sind dem Vergleich experimenteller Ergebnisse (Rastertunnelmikroskopie und Elektronenbeugung) mit, durch Potentialoptimierungsrechnungen als energetisch günstig vorhergesagten, Schichtstrukturen gewidmet. So kann für das System Perylentetracarbonsäuredianhydrid (PTCDA) auf Graphit mittels Potentialberechnungen nachgewiesen werden, daß die experimentell gefundenen ?Point-on-line koinzidenten? Strukturen energetisch günstige Anordnungen des Molekülgitters bezüglich des Substratgitters darstellen. Die Eignung der neuen Berechnungsmethode zur Vorhersage der günstigsten Adsorbatgitterstruktur für ein gegebenes System aus Molekül und Substrat, wird anhand des Systems peri-Hexabenzocoronen (HBC) auf Graphit demonstriert. Das organisch-organische Heteroepitaxiesystem PTCDA auf HBC auf Graphit wird untersucht, um zu klären, inwieweit sich die dafür gültigen Ordnungsmechanismen von denen unterscheiden, die für das Wachstum des organisch-anorganischen Heteroepitaxiesystems PTCDA auf Graphit verantwortlich sind. Dabei gelingt es, eine bisher nicht klassifizierte Art von Epitaxie, d.h. substratinduzierter Ordnung, nachzuweisen. Dieser neue Epitaxietyp ist bedingt durch die innere Struktur einer Substrateinheitszelle - das Substrat ist ja hier selbst eine Schicht geordneter Moleküle, die natürlich eine innere Struktur aufweisen. Im folgenden wird ein verallgemeinertes Klassifizierungssystem für Epitaxietypen abgeleitet, welches den neuen Epitaxietyp beinhaltet. Im letzten Kapitel wird die Struktur von der ersten Lagen von Titanylphthalocyanin (TiOPc) auf Au(111) experimentell untersucht und mit entsprechenden Potentialoptimierungsrechnungen verglichen. Die Übereinstimmung von experimentellen und theoretischen Ergebnissen zeigt, daß die GRID Technik, zumindest prinzipiell, auch für Molekülschichten auf Metallsubstraten anwendbar ist.
|
267 |
Scanning Tunneling Microscopy Studies of Defects in Semiconductors: Inter-Defect and Host Interactions of Zn, Er, Mn, V, and Co Single-Atom Defects in GaAs(110)Benjamin, Anne Laura 25 October 2018 (has links)
No description available.
|
268 |
Energetically and Kinetically Driven Step Formation and Evolution on Silicon SurfacesNielsen, Jon F. 11 October 2001 (has links)
No description available.
|
269 |
Nízkoteplotní rastrovací tunelová mikroskopie / Low temperature scanning tunneling microscopySojka, Antonín January 2017 (has links)
The diploma thesis is divided into two main parts. The first part describes the production of chrome and cobalt tips for SP-STM with subsequent testing of chrome tips on the Fe-Ir system (111). Furthermore, the first results from the growth studies of niobium on iridium(111) are presented. In the second part is described in detail the experimental LT-STM microscope of the Faculty of Physical Engineering. The chapter deals with the development of the microscope and its testing on a HOPG sample under atmospheric and vacuum conditions. The chapter describes the biggest problems which were solved when the microscope was puting into operation state. The second part also introduces the design of a new vacuum transport system, which consists of a tip and sample transport pallet. At the end of the second part is described the testing of cooling systems for LT-STM and the design of their modifications.
|
270 |
Electronic and Magnetic Properties of the Fe/GaAs(110) InterfaceIffländer, Tim 30 October 2015 (has links)
No description available.
|
Page generated in 0.1511 seconds