• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 99
  • 21
  • 20
  • 17
  • 15
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Scanning Probe Microscopy Investigation of Multiferroic Materials Hosting Skyrmion Lattices

Neuber, Erik 23 October 2019 (has links)
Skyrmions are spin textures with particle character that order themselves into so-called “skyrmion lattices” (SkLs). A skyrmion is topologically nontrivial, which adds stability against external perturbations and attracts tremendous interest from the theoretical side. Since skyrmions can be moved with small electrical currents, they are being discussed for novel spintronic applications, such as racetrack memory. Further interest has been spurred by the discovery of multiferroic compounds that also host SkLs, resulting in additional properties that are highly interesting both for applications and for fundamental research. The scope of this thesis encompasses the investigation of two completely different exemplary SkL-hosting multiferroic systems using a broad set of scanning probe microscopy techniques. These can probe multiple properties on a local scale in real space with a single measurement, examining details not resolved by non-local techniques. In the first part, there is a brief introduction to magnetic skyrmions and scanning probe microscopy with a short review of the theoretical background. The materials of interest and their known properties are then introduced. These are Cu2OSeO3, an insulator exhibiting the emergence of Bloch-type skyrmions as well as type-II multiferroicity, and the lacunar spinel chalcogenides, which were recently found to exhibit multiferroic Néel-type skyrmions pinned to magnetic easy-axes/planes together with type-I multiferroicity originating from a structural Jahn–Teller transition. The second part first presents various scanning probe studies and their results for Cu2OSeO3, where, aside from the magnetic textures of the various magnetic phases, the magnetoelectric effect and the magnetic phase transitions are investigated and described with basic theoretical models. Results show a good correlation between observations and theory, as well as with other experimental methods. Various lacunar spinels are then investigated, mostly GaV4S8 and GaMo4S8. Observation of the structural phase transition leads to the observation of {100}-type domain boundaries compatible with the compatibility critera based on crystal geometry. Furthermore, measurements of the magnetic textures of the different magnetic phases for GaV4S8 are presented and analysed. Results highlight a pinning of the pitch vector to the magnetic hard plane, and that the structural domain boundaries are by necessity magnetic domain boundaries. Analysing the influence of surface anisotropy and structural domain boundaries reveals a strong effect of both on the formation of magnetic patterns in their vicinity. Finally, the magnetoelectric effect of different lacunar spinels is investigated by measuring the surface potential with changing magnetic fields leading to a hysteretic behaviour in all materials.:Abstract/Kurzdarstellung 1 Introduction – Skyrmions meet Multiferroicity 2 Magnetic Skyrmion Lattices 2.1 What is a Skyrmion? 2.2 Formation of Skyrmion Lattices 2.2.1 Basic Considerations 2.2.2 Emergence of Skyrmion Lattices 2.3 General Properties of Skyrmions 2.4 Ways to Observe Skyrmions 3 Scanning Probe Microscopy 3.1 General Aspects 3.2 SPM in Contact Mode 3.2.1 Atomic Force Microscopy 3.2.2 Conductive Atomic Force Microscopy 3.2.3 Piezoresponse Force Microscopy 3.3 SPM in Non-Contact Mode 3.3.1 Atomic Force Microscopy 3.3.2 Kelvin Probe Force Microscopy 3.3.3 Magnetic Force Microscopy 3.4 About Scanning Dissipation Microscopy 3.4.1 Possible Origins of Dissipation 3.4.2 Measuring Dissipation 3.4.3 Mathematical Background 3.5 Experimental Setup 4 Investigated Materials 4.1 Cubic copper(II)-oxo-selenite Cu2O(SeO3) 4.2 Lacunar Spinel Chalcogenides 4.2.1 General Aspects and Materials Chosen 4.2.2 Structural Phase Transition and Expected Piezoresponse 4.2.3 Magnetic Phase Transition 4.2.4 Investigated Crystals 5 Investigations on Cu2OSeO3 5.1 Observing the Different Magnetic Phases 5.1.1 Analysis of Magnetic Textures with Magnetic Force Microscopy 5.1.2 Analysis of Magnetic Textures with Scanning Dissipation Microscopy 5.2 Analysis of the Magnetoelectric Effect 5.2.1 Observing the Magnetoelectric Effect with KPFM 5.2.2 Heuristic Description of the Magnetoelectric Effect 5.3 Analysing the Magnetic Phase Transitions with SPM 5.3.1 Motivation from Theory 5.3.2 Distinguishing the Helical, Conical and Field-Polarised Phases 5.3.3 The Helical–Conical Phase Transition 5.3.4 Passing through the Conical Phase 6 Investigations on GaV4S8 6.1 Observing the Structural Phase Transition 6.1.1 Results from nc-AFM 6.1.2 Results from ct-AFM and PFM 6.2 Observing the Magnetic Phases 6.3 Analysing the Magnetic SDM Images 6.3.1 Theoretical Considerations 6.3.2 Rescaling from the Measured to the Magnetic Hard Plane 6.3.3 Influence of the Surface on the Patterns Observed 6.4 Influence of Structural Domain Walls on Magnetic Patterns 7 Further Investigation on Lacunar Spinels 7.1 Investigations on GaMo4S8 7.1.1 Experimental Results 7.1.2 Theoretical Considerations 7.1.3 Evaluation of the Experimental Data 7.2 Magnetoelectric Effect of Lacunar Spinels 8 Remarks About Magnetic Non-Contact Dissipation 9 Summary and Outlook 9.1 Synopsis 9.2 Outlook – Probing the Future A Permissions For Usage of Content B Some Additional Information on Non-Contact Dissipation C Bonus Images Bibliography Publications Acknowledgements Erklärung / Skyrmionen sind teilchenartige Spintexturen, welche sich in sogenannten Skyrmionengittern anordnen. Jedes Skyrmion besitzt eine topologische Ladung. Dieses Konzept ist von bedeutendem Interesse für die Theorie und führt zu zusätzlicher Stabilität gegen externe Störungen. Da Skyrmionen mit geringen elektrischen Strömen bewegt werden können, sind sie auch Kanditaten für neuartige, spintronische Anwendungen wie den Racetrack-Speicher. Zusätzlich wurden vor einiger Zeit multiferroische Materialien entdeckt, welche ebenso Skyrmionengitter bilden und aufgrund dessen weitere, interessante Eigenschaften besitzen, welche sowohl für Anwendungen als auch für die Grundlagenforschung interessant sind. Inhalt dieser Dissertation ist die Untersuchung zweier verschiedener, exemplarischer multiferroischer Materialien mit Skyrmiongitterphasen mittels verschiedener Rastersondentechniken. Dies erlaubt das gleichzeitige Erfassen mehrerer Parameter auf einer lokalen Skala im Realraum mit einer einzigen Messung und somit die Untersuchung von Details, welche durch nicht-lokale Techniken nicht erfasst werden können. Im ersten Teil wird eine kurze Einleitung über magnetische Skyrmionen und die Rastersondenmikroskopie sowie Abrisse über deren theoretischen Hintergrund gegeben. Im Anschluß werden die untersuchten Materialien und deren Eigenschaften vorgestellt. Das erste System ist Cu2OSeO3, ein Isolator, welcher Bloch-artige Skyrmionengitter formiert und ein Typ-II Multiferroikum ist. Weitere Systeme gehören zur Klasse der lakunären Spinell-Chalkogenide, welche nach neuesten Erkenntnissen multiferroische Néel-artige Skyrmionen formieren, deren Modulationsvektor zur magnetisch harten Achse/Ebene fixiert ist. Ebenso sind diese aufgrund eines strukturellen Jahn-Teller Überganges Typ-I Multiferroika. Im zweiten Teil werden verschiedene Rastersondenuntersuchungen und ihre Ergebnisse präsentiert. Beginnend mit Cu2OSeO3, werden, neben den den magnetische Texturen der verschiedenen magnetischen Phasen, der magnetoelektrische Effekt und der helisch-konische Phasenübergang untersucht sowie mit grundlegenden theoretischen Modellen verglichen. Die Ergebnisse zeigen eine gute Übereinstimmung zwischen den Beobachtungen und der Theorie sowie mit anderen Meßmethoden. Im Anschluß werden verschiedene lakunäre Spinell-Chalkogenide, vor allem GaV4S8 und GaMo4S8, untersucht. Beobachtungen des strukturellen Phasenüberganges ergeben die Formierung von {100}-artigen Domänenwänden, welche mit den Vorhersagen der Kompatibilitätskriterien resultierend aus der Kristallgeometrie übereinstimmen. Des Weiteren werden Messungen der magnetischen Texturen der verschiedenen magnetischen Phasen von GaV4S8 präsentiert sowie analysiert. Die Ergebnisse heben hervor, daß der Modulationsvektor an der magnetisch harten Ebene fixiert ist und daß die strukturellen Domänengrenzen notwendigerweise auch die magnetischen Domänengrenzen sein müssen. Eine Analyse des Einflusses der Oberflächenanisotropie sowie der strukturellen Domänengrenzen zeigt eine starke Wirkung beider auf die Formierung magnetischer Texturen in ihrer Nähe. Schließlich wird der magnetoelektrische Effekt der lakunären Spinell-Chalkogenide durch Messung des Oberflächenpotentiales als Funktion des angelegten Magnetfeldes untersucht. Beobachtungen ergeben ein hysteretisches Verhalten in allen Materialen.:Abstract/Kurzdarstellung 1 Introduction – Skyrmions meet Multiferroicity 2 Magnetic Skyrmion Lattices 2.1 What is a Skyrmion? 2.2 Formation of Skyrmion Lattices 2.2.1 Basic Considerations 2.2.2 Emergence of Skyrmion Lattices 2.3 General Properties of Skyrmions 2.4 Ways to Observe Skyrmions 3 Scanning Probe Microscopy 3.1 General Aspects 3.2 SPM in Contact Mode 3.2.1 Atomic Force Microscopy 3.2.2 Conductive Atomic Force Microscopy 3.2.3 Piezoresponse Force Microscopy 3.3 SPM in Non-Contact Mode 3.3.1 Atomic Force Microscopy 3.3.2 Kelvin Probe Force Microscopy 3.3.3 Magnetic Force Microscopy 3.4 About Scanning Dissipation Microscopy 3.4.1 Possible Origins of Dissipation 3.4.2 Measuring Dissipation 3.4.3 Mathematical Background 3.5 Experimental Setup 4 Investigated Materials 4.1 Cubic copper(II)-oxo-selenite Cu2O(SeO3) 4.2 Lacunar Spinel Chalcogenides 4.2.1 General Aspects and Materials Chosen 4.2.2 Structural Phase Transition and Expected Piezoresponse 4.2.3 Magnetic Phase Transition 4.2.4 Investigated Crystals 5 Investigations on Cu2OSeO3 5.1 Observing the Different Magnetic Phases 5.1.1 Analysis of Magnetic Textures with Magnetic Force Microscopy 5.1.2 Analysis of Magnetic Textures with Scanning Dissipation Microscopy 5.2 Analysis of the Magnetoelectric Effect 5.2.1 Observing the Magnetoelectric Effect with KPFM 5.2.2 Heuristic Description of the Magnetoelectric Effect 5.3 Analysing the Magnetic Phase Transitions with SPM 5.3.1 Motivation from Theory 5.3.2 Distinguishing the Helical, Conical and Field-Polarised Phases 5.3.3 The Helical–Conical Phase Transition 5.3.4 Passing through the Conical Phase 6 Investigations on GaV4S8 6.1 Observing the Structural Phase Transition 6.1.1 Results from nc-AFM 6.1.2 Results from ct-AFM and PFM 6.2 Observing the Magnetic Phases 6.3 Analysing the Magnetic SDM Images 6.3.1 Theoretical Considerations 6.3.2 Rescaling from the Measured to the Magnetic Hard Plane 6.3.3 Influence of the Surface on the Patterns Observed 6.4 Influence of Structural Domain Walls on Magnetic Patterns 7 Further Investigation on Lacunar Spinels 7.1 Investigations on GaMo4S8 7.1.1 Experimental Results 7.1.2 Theoretical Considerations 7.1.3 Evaluation of the Experimental Data 7.2 Magnetoelectric Effect of Lacunar Spinels 8 Remarks About Magnetic Non-Contact Dissipation 9 Summary and Outlook 9.1 Synopsis 9.2 Outlook – Probing the Future A Permissions For Usage of Content B Some Additional Information on Non-Contact Dissipation C Bonus Images Bibliography Publications Acknowledgements Erklärung
62

Development and Implementation of Acoustic Feedback Control for Scanning Probe Microscopy

Fernandez Rodriguez, Rodolfo 01 January 2012 (has links)
A remote-sensing acoustic method for implementing position control feedback in Scanning Probe Microscopy (SPM) is presented. The capabilities of this feedback control using the new Whispering Gallery Acoustic Sensing (WGAS) method is demonstrated in a Shear-force Scanning Probe Microscope that uses a sharp probe attached to a piezoelectric Quartz Tuning Fork (QTF) firmly mounted on the microscope's frame. As the QTF is electrically driven its mechanical response reaches the SPM frame which then acts as a resonant cavity producing acoustic modes measured with an acoustic sensor strategically placed on the SPM head. The novelty of the WGAS resides in using an SPM frame with a perimeter closely matching the intervening acoustic wavelength to act as a resonant cavity. The whispering gallery cavity constitutes an acoustic amplifier for the mechanical motion of the QTF probe. The observed monotonic behavior of the whispering gallery acoustic signal as a function of the probe sample distance is exploited here for tip-sample distance control with nanometer sensitivity, thus allowing topographic characterization as the probe is scanned across the sample's surface. This thesis includes a description of a Labview based programming for the Field Programmable Gate Array (FPGA) card used in the automated control of the WGAS feedback microscope, a solution for improving the effective resolution of the Digital to Analog Converter (DAC) and initial results towards theoretically modeling the WGAS working principle.
63

Charakterizace 1-D nanostruktur metodami SPM / Characterization of 1-D Nanostructures by SPM Methods

Škoda, David January 2010 (has links)
The thesis is aimed at the characterization of carbon nanotubes and silver nanowires by Scanning Probe Microscopy, namely Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), Conductive AFM (CAFM) and Scanning Near-Field Optical Microscopy (SNOM). Carbon nanotubes were analyzed by STM, AFM and CAFM microscopy. In a designed apparatus the silver nanowires were fabricated by template assisted deposition and were analyzed with respect to their geometry (AFM), local conductivity (CAFM) and optical properties (SNOM, microreflex spectroscopy). It was found that preferential type of carbon nanowires depends on the fabrication process. The measurements of local conductivity of the nanotubes revealed the similarity with the STM measurements. The AFM measurements of silver nanowires confirmed their growth inside the pores of polycarbonate template. Single nanowires exhibits the semiconducting behavior according to I--V measurement and localized plasmon resonances.
64

Nano-scale RF/Microwave Characterization of Materials' Electromagnetic Properties

Myers, Joshua Allen 20 July 2012 (has links)
No description available.
65

Observation of fractional edge excitations in nanographene spin chains

Mishra, Shantanu, Catarina, Gonçalo, Wu, Fupeng, Ortiz, Ricardo, Jacob, David, Eimre, Kristjan, Ma, Ji, Pignedoli, Carlo A., Feng, Xinliang, Ruffieux, Pascal, Fernández-Rossier, Joaquín, Fasel, Roman 11 November 2024 (has links)
Fractionalization is a phenomenon in which strong interactions in a quantum system drive the emergence of excitations with quantum numbers that are absent in the building blocks. Outstanding examples are excitations with charge e/3 in the fractional quantum Hall effect1,2, solitons in one-dimensional conducting polymers3,4 and Majorana states in topological superconductors5. Fractionalization is also predicted to manifest itself in low-dimensional quantum magnets, such as one-dimensional antiferromagnetic S = 1 chains. The fundamental features of this system are gapped excitations in the bulk6 and, remarkably, S = 1/2 edge states at the chain termini7,8,9, leading to a four-fold degenerate ground state that reflects the underlying symmetry-protected topological order10,11. Here, we use on-surface synthesis12 to fabricate one-dimensional spin chains that contain the S = 1 polycyclic aromatic hydrocarbon triangulene as the building block. Using scanning tunnelling microscopy and spectroscopy at 4.5 K, we probe length-dependent magnetic excitations at the atomic scale in both open-ended and cyclic spin chains, and directly observe gapped spin excitations and fractional edge states therein. Exact diagonalization calculations provide conclusive evidence that the spin chains are described by the S = 1 bilinear-biquadratic Hamiltonian in the Haldane symmetry-protected topological phase. Our results open a bottom-up approach to study strongly correlated phases in purely organic materials, with the potential for the realization of measurement-based quantum computation13.
66

NC-AFM and XPS Investigation of Single-crystal Surfaces Supporting Cobalt (III) Oxide Nanostructures Grown by a Photochemical Method

Mandia, David J. 27 July 2012 (has links)
The work of this thesis comprises extensive Noncontact Atomic Force Microscopy (NC-AFM) characterization of clean metal-oxide (YSZ(100)/(111) and MgO(100)) and graphitic (HOPG) supports as templates for the novel, photochemically induced nucleation of cobalt oxide nanostructures, particularly Cobalt (III) Oxide. The nanostructure-support surfaces were also studied by X-ray Photoelectron Spectroscopy (XPS) to verify the nature of the supported cobalt oxide and to corroborate the surface topographic and phase NC-AFM data. Heteroepitaxial growth of Co2O3 nanostructures proves to exhibit a variety of different growth modes based on the structure of the support surface. On this basis, single-crystal support surfaces ranging from nonpolar to polar and atomically flat to highly defective and reactive were chosen, again, yielding numerous substrate-nanostructure interactions that could be probed by high-performance surface science techniques.
67

Vývoj instrumentálního zařízení pro výzkum nanostruktur / Development of Instrumental Equipment for the Characterization of Nanostructures

Nováček, Zdeněk January 2015 (has links)
The thesis focuses on the development of instruments used for surfaces and nanostructures characterization. Individual techniques of scanning probe microscopy provide different information of the sample surface. The resolution of scanning probe microscopy, providing 3D topography information, reaches subnanometer values or even an atomic level. Therefore, the scanning probe microscopy is one of the most employed method in the field of nanotechnology. The thesis describes the details of development of two scanning probe microscopes intended for measurement under ultra high vacuum conditions. As for the first one, many changes were proposed leading to its better variability, extended functionality and increased user comfort. The second microscope is being design with the aim of its combination with other analytic techniques, especially with scanning electron microscopy. An integral part of scanning probe microscopes is a precise positioning system for navigation of the probe to the selected site. Therefore, the thesis also deals with the development of linear piezoceramic actuators used not only in the ultra high vacuum compatible microscopes but also as a general purpose nanomanipulators.
68

Self-assembly of conjugated (macro)molecules

Samori, Paolo 24 October 2000 (has links)
In dieser Dissertation wird die Selbstorganisation von pi-konjugierten (makro)molekularen Architekturen durch Chemisorption oder Physisorption in hochgeordnete supramolekulare nanoskopische und mikroskopische Strukturen auf festen Trägern untersucht. Ihre Struktur und Dynamik wurden auf molekularer Skala hauptsächlich mit Rastersondenmikroskopien, insbesondere mit Rastertunnel- und Rasterkraftmikroskopie, untersucht. Dies erlaubte die Charakterisierung einer Reihe von Phänomenen, die sowohl an Fest-Flüssig-Grenzflächen auftreten, wie beispielsweise die Dynamik der einzelnen molekularen Nanostäbchen (Ostwald Reifung) und die Fraktionierung steifer Polymerstäbchen durch Physisorption an der Grafitoberfläche aus der Lösung heraus, als auch in trockenen Filmen vorkommen wie die Selbstorganisation steifer Polymerstäbchen zu Nanobändern mit molekularen Querschnitten, die sich epitaktisch auf Oberflächen orientieren lassen und auch die Ausbildung gestapelter Architekturen von diskförmigen Molekülen. Außerdem wurden die elektronischen Eigenschaften der untersuchten Systeme mit Hilfe von Photoelektronenspektroskopie charakterisiert. Die entwickelten Nanostrukturen sind nicht nur für Nanokonstruktionen auf festen Oberflächen von Interesse, sondern besitzen auch Eigenschaften, die sie für Anwendungen in einer zukünftigen molekularen Elektronik prädestiniert, etwa für den Aufbau molekularer Drähte. / In this thesis the self-assembly of pi-conjugated (macro)molecular architectures, either through chemisorption or via physisorption, into highly ordered supramolecular nanoscopic and microscopic structures has been studied. On solid substrates structure and dynamics has been investigated on the molecular scale making use primarily of Scanning Probe Microscopies, in particular Scanning Tunneling Microscopy and Scanning Force Microscopy. This allowed to characterize a variety of phenomena occurring both at the solid-liquid interface, such as the dynamics of the single molecular nanorods (known as Ostwald ripening), the fractionation of a solution of rigid-rod polymers upon physisorption on graphite; and in dry films, i.e. the self-assembly of rigid-rod polymers into nanoribbons with molecular cross sections which can be epitaxially oriented at surfaces and the formation ordered layered architectures of disc-like molecules. In addition the electronic properties of the investigated moieties have been studied by means of Photoelectron Spectroscopies. The nanostructures that have been developed are not only of interest for nanoconstructions on solid surfaces, but also exhibit properties that render them candidates for applications in the field of molecular electronics, in particular for building molecular nanowire devices.
69

Investigation on high-mobility graphene hexagon boron nitride heterostructure nano-devices using low temperature scanning probe microscopy

Dou, Ziwei January 2018 (has links)
This thesis presents several experiments, generally aiming at visualising the ballistic and topological transport on the high-mobility graphene/boron nitride heterostructure using the scanning gate microscope. For the first experiment, we use the scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and in a weak perpendicular magnetic field. We employ a magnetic focusing transport configuration to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local potential generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector. For the second experiment, we investigate the graphene van der Waals structures formed by aligning monolayer graphene with insulating layers of hexagonal boron nitride which exhibit a moiré superlattice that is expected to break sublattice symmetry. However, despite an energy gap of several tens of millielectronvolts opening in the Dirac spectrum, electrical resistivity remains lower than expected at low temperature and varies between devices. While subgap states are likely to play a role in this behaviour, their precise nature is still unclear in the community. We therefore perform a scanning gate microscopy study of graphene moiré superlattice devices with comparable activation energy but with different charge disorder levels. In the device with higher charge impurity ($\sim$ 10$^-$ cm$^{-2}$) and lower resistivity ($\sim$ 10 k$\Omega$) at the Dirac point we observe scanning gate response along the graphene edges. Combined with simulations, our measurements suggest that enhanced edge doping is responsible for this effect. In addition, a device with low charge impurity ($\sim$ 10$^{9}$ cm$^{-2}$) and higher resistivity ($\sim$ 100 k$\Omega$) shows subgap states in the bulk. Our measurements provide alternative model to the prevailing theory in the literature in which the topological bandstructures of the graphene moiré superlattices entail an edge currents shunting the insulating bulk. In the third experiment, we continue our study in the graphene moir$\acute e$ superlattices with the newly reported non-local Hall signals at the main Dirac point. It has been associated with the non-zero valley Berry curvature due to the gap opening and the nonlocal signal has been interpreted as the signature of the topological valley Hall effects. However, the nature of such signal is still disputed in the community, due to the vanishing density of states near the Dirac point and the possible topological edge transport in the system. Various artificial contribution without a topological origin of the measurement scheme has also been suggested. In connection to the second experiment, we use the scanning gate microscope to image the non-local Hall resistance as well as the local resistance in the current path. By analysing the features in the two sets of images, we find evidence for topological Hall current in the bulk despite a large artificial components which cannot be distinguished in global transport measurement. In the last experiment, we show the development of a radio-frequency scanning impedance microscopy compatible with the existing scanning gate microscopy and the dilution refrigerator. We detailed the design and the implementation of the radio-frequency reflectometry and the specialised tip holder for the integration of the tip and the transmission lines. We demonstrate the capability of imaging local impedance of the sample by detecting the mechanical oscillation of the tip, the device topography, and the Landau levels in the quantum Hall regime at liquid helium temperature and milli-Kelvin temperature.
70

NC-AFM and XPS Investigation of Single-crystal Surfaces Supporting Cobalt (III) Oxide Nanostructures Grown by a Photochemical Method

Mandia, David J. 27 July 2012 (has links)
The work of this thesis comprises extensive Noncontact Atomic Force Microscopy (NC-AFM) characterization of clean metal-oxide (YSZ(100)/(111) and MgO(100)) and graphitic (HOPG) supports as templates for the novel, photochemically induced nucleation of cobalt oxide nanostructures, particularly Cobalt (III) Oxide. The nanostructure-support surfaces were also studied by X-ray Photoelectron Spectroscopy (XPS) to verify the nature of the supported cobalt oxide and to corroborate the surface topographic and phase NC-AFM data. Heteroepitaxial growth of Co2O3 nanostructures proves to exhibit a variety of different growth modes based on the structure of the support surface. On this basis, single-crystal support surfaces ranging from nonpolar to polar and atomically flat to highly defective and reactive were chosen, again, yielding numerous substrate-nanostructure interactions that could be probed by high-performance surface science techniques.

Page generated in 0.1294 seconds