• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Light in scattering media : active control and the exploration of intensity correlations

Paniagua Diaz, Alba Maria January 2018 (has links)
When light encounters scattering materials such as biological tissue, white paint or clouds, it gets randomly scattered in all directions, which traditionally has been seen as a barrier for imaging techniques (reducing their resolution) or sensing, due to the reduction of the penetration depth of light. However, in recent years it has been shown that scattering might not necessarily be an impediment, and that the knowledge of the properties of multiple scattering can be indeed useful for imaging, sensing and other applications. In the first part of this thesis (Chapters 2 to 5) we study the implications of manipulating the light incident on a multiply scattering material. We experimentally show how by actively controlling the output light of a bad quality laser we manage to not only improve its beam quality, but also in an energy-efficient way, in comparison with traditional methods. In a different experiment presented in this thesis, we show how the active control of the light incident on a scattering material can be useful to improve sensing through scattering media, by means of increasing the transmission and energy deposited inside (Chapter 5). In the final part of the thesis we present the first experimental observation of intensity correla- tions between transmitted and reflected patterns from a scattering material (Chapter 6), exploring how it depends on the parameters of the scattering medium. In the last part of the thesis (Chapter 7) we present a new imaging technique based on the use of the intensity correlations described in the previous chapter, opening new possibilities to non-invasive imaging through highly scattering materials.
2

Multiple scattering of waves by dense random distributions of particles for applications in light scattering by noble metal nanoparticles and microwave scattering by terrestrial snow /

Tse, Ka-ki. January 2009 (has links) (PDF)
Thesis (Ph.D.)--City University of Hong Kong, 2009. / "Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references.
3

CHARACTERIZATION OF COLLOIDAL NANOPARTICLE AGGREGATES USING LIGHT SCATTERING TECHNIQUES

Kozan, Mehmet 01 January 2007 (has links)
Light scattering is a powerful characterization tool for determining shape, size, and size distribution of fine particles, as well as complex, irregular structures of their aggregates. Small angle static light scattering and elliptically polarized light scattering techniques produce accurate results and provide real time, non-intrusive, and in-situ observations on prevailing process conditions in three-dimensional systems. As such, they complement conventional characterization tools such as SEM and TEM which have their known disadvantages and limitations. In this study, we provide a thorough light scattering analysis of colloidal tungsten trioxide (WO3) nanoparticles in the shape of irregular nanospheres and cylindrical nanowires, and of the resulting aggregate morphologies. Aggregation characteristics as a function of primary particle geometry, aspect ratio of nanowires, and the change in dispersion stability in various polar solvents without the use of dispersants are monitored over different time scales and are described using the concepts of fractal theory. Using forward scattered intensities, sedimentation rates as a result of electrolyte addition and particle concentration at low solution pH are quantified, in contrast to widely reported visual observations, and are related to the aggregate structure in the dispersed phase. For nanowires of high aspect ratios, when aggregate structures cannot directly be inferred from measurements, an analytical and a quasiexperimental method are used.
4

Modélisation du temps de vol des photons dans un milieu diffusant et absorbant à l’échelle femtoseconde / Modelling of the time of flight of photons through a scattering and absorbing medium at femtosecond time scale

Kervella, Myriam 05 February 2013 (has links)
Les milieux diffusants épais et absorbant sont présents dans un grand nombre de domaine : peintures, jets,crèmes et produits cosmétiques, tissus biologiques, etc. L’étude in situ et non invasive de tels milieux est de la plus haute importance car l’enjeu est de pouvoir mesurer les propriétés physiques à l’intérieur même du système sans le perturber. L’utilisation d’un laser femtoseconde permet de sonder ces milieux en profondeur tout en effectuant des mesures de temps de vol des photons. L’objectif de cette thèse est de modéliser l’interaction entre une impulsion femtoseconde et un milieu à la fois diffusant et absorbant.L’effet principal des processus d’absorption est d’accélérer le temps de vol des photons. En effet, plus un photon reste longtemps dans le milieu, plus il aura de chance d’être absorbé. Les processus d’absorption ont en effet la propriété de « tuer » les trajectoires les plus longues, qui correspondent aux retards les plus conséquents. Une étude fine des signatures temporelles peut donc renseigner quant à la taille des particules, au coefficient d’absorption du liant, des particules ou d’autres paramètres microphysiques du milieu. Une partie conséquente du travail de thèse a consisté à étendre les modèles de diffusion temporelle au cas d'un milieu absorbant. Nous avons enfin réalisé plusieurs applications numériques à l’aide d’un code de Monte-Carlo modélisant la diffusion multiple temporelle dans un milieu absorbant. Deux cas particuliers exhibant une modification des signatures temporelles très sensibles à l’absorption ont été étudiés et illustrés de cas concret. Tout d’abord, nous montrons qu’une très faible absorption dans de grosses particules se répercute sur la signature temporelle en diffusion avant. Une application pour la détermination de la température d’alumine dans un jet de propulseur est envisagée. Ensuite, l’absorption du liant réduit les temps de vol en rétrodiffusion. Une mise en évidence expérimentale de ce phénomène ainsi qu’une comparaison avec nos modèles sont présentées. / Thick scattering and absorbing media are present in a great variety of domain such as paints, jets,cosmetics, biological tissues, etc. In situ and non invasive studies of such media are very importan tbecause the issue is to measure physical properties inside the medium without perturbations. The use of a femtosecond laser can both probe these media in depth and make photons time of flight measurement.The aim of this thesis is to model interaction between a femtosecond pulse and a scattering and absorbing medium. The main effect of absorption is to increase the time of flight of photons. Indeed, the absorption processes have the property to “kill” the longer trajectory, which corresponds to more important delays.An extended study of temporal profiles can give information about the size of the particles, the absorption coefficients of the surrounding medium and of particles or other microphysical properties of the medium.A substantial part of the thesis consists in extension of temporal scattering models to the case of absorbing medium. We have finally realized several numerical applications with the help of a Monte-Carlo code,which simulates temporal multiple scattering processes in an absorbing medium. Two particular cases exhibit a neat modification of the temporal profile with absorption. We have studied and illustrated them with practical cases. First, we show that small absorption in large particles modifies the temporal profile inforward scattering. Application such as temperature determination of alumina particles in a rocket jet is considered. Then, absorption in the surrounding medium decreases the time of flight of backscattering temporal profile. An experimental illustration of this phenomenon and a comparison with our models are presented.
5

Correlações de imagens por biospeckle de superfícies rugosas: simulações e experimentos / Correlations of images generated by biospeckle form rough surfaces: simulations and experiments

Pereira, Alexsandro de Farias 10 August 2012 (has links)
In this work, it was studied theoretically and experimentally biospeckle technique for analysis of rough surface with application to the investigation of biological activity. The theoretical study was conducted using light scattering theory, in particular a first order perturbation method, seeking to obtain the scattering cross-section per unit area of rough surface. Once given the cross-section, it was possible to obtain the distribution of intensities in a certain region of space as a function of time, allowing the comparison of different light distributions in different instants. The experimental investigation was made from the comparison of speckle patterns recorded (by a CCD camera) at different time instants produced from scattering of coherent light at 635 nm from a freshly harvested plant leaf. The parameter of comparison used was the Pearson correlation coefficient. The experimental result obtained from the correlation coefficient versus time showed a temporal evolution type exponential decay, indicating a degradation behavior of the leaf chemically active and regulated by equations rate. The theoretical result of the correlation function of time, obtained by simulation, also showed a behavior type exponential decay indicating a good agreement with experimental results. / Nesta dissertação, foi estudada teórica e experimentalmente a técnica de biospeckle para análise de superfície rugosa com aplicação na investigação de atividade biológica. O estudo teórico foi feito usando teoria de espalhamento da luz, em particular usando método perturbativo de primeira ordem, buscando obter a seção de choque de radiação espalhada por unidade de área da superfície rugosa. Uma vez determinada a seção de choque, foi possível obter a distribuição de intensidades numa certa região do espaço, em função do tempo, permitindo a comparação das diferentes distribuições de luz em instantes distintos. A investigação experimental foi feita a partir da comparação de padrões de speckles gravados (por uma câmera CCD) em diferentes instantes de tempo originados do espalhamento de luz coerente em 635 nm, a partir de uma folha vegetal recém colhida. O parâmetro de comparação usado foi o coeficiente de correlação de Pearson. O resultado experimental obtido do coeficiente de correlação em função do tempo mostrou uma evolução temporal do tipo exponencial decrescente, indicando um comportamento de degradação da folha quimicamente ativo e regido por equações de taxas. O resultado teórico do coeficiente de correlação em função do tempo, obtido por meio de simulação, também evidenciou o comportamento exponencial decrescente indicando uma boa concordância com o resultado experimental.
6

Spin-wave generation and transport in magnetic microstructures

Wagner, Kai 13 March 2019 (has links)
Generating, miniaturizing and controlling spin waves on the nanometer scale is of great interest for magnonics. For instance, this holds the prospect of exploring wave-based logic concepts and reduced Joule heating, by avoiding charge transport, in spin-wave circuitry. In this work, a novel approach is for the first time confirmed experimentally, which allows confining spin-wave transport to nanometre-wide channels defined by magnetic domain walls. This is investigated for different domain wall types( 90deg and180deg Néel walls) in two material systems of polycrystalline Ni81Fe19 and epitaxial Fe. The study covers the thermal, linear and non-linear regime utilizing micro- focused Brillouin light scattering microscopy complemented by micromagnetic simulations. An initially linear dispersion dominated by dipolar interactions is found for the guided spin waves. These are transversally confined to sub-wavelength wide beams with a well-defined wave vector along the domain wall channel. In the non-linear regime, higher harmonic generation of additional spin-wave beams at the sides of the domain wall channel is observed. Furthermore, the possibility to shift the position of the domain wall over several microns by small magnetic fields is demonstrated, while maintaining its spin-wave channeling functionality. Additionally, spin-wave transmittance along domain walls, which change direction at the edges of the structure as well as between interconnected walls of identical and different type is studied. Characterization of spin-wave transmission through interconnected domain walls is an important step towards the development of magnonic circuitry based on domain wall(-networks). With respect to developing flexible and scalable spin-wave sources, the second part of this thesis addresses auto-oscillations in spin Hall oscillators (based on a Pt / Ni81Fe19 bilayer) of tapered nanowire geometry. In these systems, a simultaneous formation of two separate spin-wave bullets of distinct localization and frequency has been indicated. This spin-wave bullet formation is con- firmed experimentally and investigated for different driving currents. Subsequently, control over these bullets by injecting external microwave signals of varying frequency and power is demon- strated, switching the oscillator into single-mode operation. Three synchronized auto-oscillatory states are observed, which can be selected by the frequency of the externally imprinted signal. This synchronization results in linewidth reduction and frequency-locking of the individual bullet modes. Simultaneously the bullet-amplitude is amplified and is found to scale as P2/3 with the injected microwave power P. This amplification and control over position and frequency of the spin-wave bullets is promising for the development of microwave amplifiers/detectors and spin- wave sources on the nanoscale based on spin Hall oscillators.:1 Introduction 1 2 Theoretical background 4 2.1 Energy density of thin film ferromagnets and domain(wall) formation 2.2 Magnetizationdynamicsinthinfilmferromagnets 11 2.2.1 Spin-wavedispersioninthelinearregime 13 2.2.2 Magnetizationdynamicsinthenon-linearregime 17 2.3 SpinHallOscillators 21 2.3.1 Spin Hall effect and spin transfer torque in a ferromagnet/heavy-metal bi- layersystem 21 2.3.2 Characteristics of magnetization auto-oscillations 25 2.3.3 Improvement of monochromaticity, coherence and output power by injec- tionlocking 28 3 Materials and Methods 31 3.1 ElectronBeamLithography,EBL 31 3.2 Ni81Fe19 microstructures 32 3.3 Femicrostructures 34 3.4 TaperedspinHalloscillators 35 3.5 Micro-focused Brillouin Light Scattering Spectroscopy, μBLS 36 3.5.1 μBLSspatialresolution 40 4 Experimental results 43 4.1 Spin-wave dynamics in multi-domain magnetic configurations 43 4.1.1 Spin-wave dynamics of 180◦ Néel walls in rectangular elements 44 4.1.2 Spin-wave dynamics of 90◦ Néel walls in square elements 63 4.1.3 Spin-wave dynamics of interconnected Néel walls in Fe wires 76 4.2 Auto-oscillationintaperedwiregeometries 88 4.2.1 Initial static magnetic configuration and effective field 89 4.2.2 Thermally excited dynamics and spectral properties 91 4.2.3 Direct microwave excitation of spin-wave dynamics 93 4.2.4 Auto-oscillatoryresponse 96 4.2.5 Microwaveamplificationandinjectionlocking 104 5 Summary and outlook 114 Own publications 118 Bibliography 120 Acknowledgement 141 A Appendix 143 A.1 Splitting process in magnetic domains confined by domain walls 143 A.2 reconfigurable remanent states in square structures stabilized by local ion irradiation 144 A.3 Domain wall displacements induced by a scanning laser beam 145 A.4 Magnetic Force Microscopy investigation of the domain wall type and width 147 A.5 Micromagnetic simulations: problem definition and analysis 149 A.6 Current dependence of auto-oscillations in the tapered SHO 152 A.7 Fabrication of Ni81Fe19 microstructures for spin waves in domain walls 153

Page generated in 0.1108 seconds