Spelling suggestions: "subject:"schéma d’euler"" "subject:"schéma d’ruler""
1 |
Approximation et estimation de densité pour des équations d'évolution stochastique / No English title availableAboura, Omar 19 December 2013 (has links)
Dans la première partie de cette thèse, nous obtenons l’existence d’une densité et des estimées gaussiennes pour la solution d’une équation différentielle stochastique rétrograde. C’est une application du calcul de Malliavin et plus particulièrement d’une formule d’I. Nourdin et de F. Viens. La deuxième partie de cette thèse est consacrée à la simulation d’une équation aux dérivées partielles stochastique par une méthode probabiliste qui repose sur la représentation de l’équation aux dérivées partielles stochastique en terme d’équation différentielle doublement stochastique rétrograde, introduite par E. Pardoux et S. Peng. On étend dans ce cadre les idées de F. Zhang et E. Gobet et al. sur la simulation d’une équation différentielle stochastique rétrograde. Dans la dernière partie, nous étudions l’erreur faible du schéma d’Euler implicite pour les processus de diffusion et l’équation de la chaleur stochastique. Dans le premier cas, nous étendons les résultats de D. Talay et L. Tubaro. Dans le second cas, nous étendons les travaux de A. Debussche. / No English summary available.
|
2 |
Analyse numérique d’équations aux dérivées aléatoires, applications à l’hydrogéologie / Numerical analysis of partial differential equations with random coefficients, applications to hydrogeologyCharrier, Julia 12 July 2011 (has links)
Ce travail présente quelques résultats concernant des méthodes numériques déterministes et probabilistes pour des équations aux dérivées partielles à coefficients aléatoires, avec des applications à l'hydrogéologie. On s'intéresse tout d'abord à l'équation d'écoulement dans un milieu poreux en régime stationnaire avec un coefficient de perméabilité lognormal homogène, incluant le cas d'une fonction de covariance peu régulière. On établit des estimations aux sens fort et faible de l'erreur commise sur la solution en tronquant le développement de Karhunen-Loève du coefficient. Puis on établit des estimations d'erreurs éléments finis dont on déduit une extension de l'estimation d'erreur existante pour la méthode de collocation stochastique, ainsi qu'une estimation d'erreur pour une méthode de Monte-Carlo multi-niveaux. On s'intéresse enfin au couplage de l'équation d'écoulement considérée précédemment avec une équation d'advection-diffusion, dans le cas d'incertitudes importantes et d'une faible longueur de corrélation. On propose l'analyse numérique d'une méthode numérique pour calculer la vitesse moyenne à laquelle la zone contaminée par un polluant s'étend. Il s'agit d'une méthode de Monte-Carlo combinant une méthode d'élements finis pour l'équation d'écoulement et un schéma d'Euler pour l'équation différentielle stochastique associée à l'équation d'advection-diffusion, vue comme une équation de Fokker-Planck. / This work presents some results about probabilistic and deterministic numerical methods for partial differential equations with stochastic coefficients, with applications to hydrogeology. We first consider the steady flow equation in porous media with a homogeneous lognormal permeability coefficient, including the case of a low regularity covariance function. We establish error estimates, both in strong and weak senses, of the error in the solution resulting from the truncature of the Karhunen-Loève expansion of the coefficient. Then we establish finite element error estimates, from which we deduce an extension of the existing error estimate for the stochastic collocation method along with an error estimate for a multilevel Monte-Carlo method. We finally consider the coupling of the previous flow equation with an advection-diffusion equation, in the case when the uncertainty is important and the correlation length is small. We propose the numerical analysis of a numerical method, which aims at computing the mean velocity of the expansion of a pollutant. The method consists in a Monte-Carlo method, combining a finite element method for the flow equation and an Euler scheme for the stochastic differential equation associated to the advection-diffusion equation, seen as a Fokker-Planck equation.
|
Page generated in 0.0312 seconds