• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Schémas numériques pour les modèles de turbulence statistiques en un point

Larcher, Aurélien 05 November 2010 (has links) (PDF)
Les modèles de turbulence de type Navier-Stokes en moyenne de Reynolds (RANS) au premier ordre sont étudiés dans cette thèse. Ils sont constitués des équations de Navier-Stokes, auxquelles on adjoint un système d'équations de bilan pour des échelles scalaires caractéristiques de la turbulence. L'évaluation de celles-ci permet, grâce à une relation algébrique, de calculer une viscosité additionnelle dite "turbulente", modélisant la contribution de l'agitation turbulente dans les équations de Navier-Stokes. Les problèmes d'analyse numérique abordés se placent dans le contexte d'un algorithme à pas fractionnaire constitué d'une approximation, sur un maillage régulier, des équations de Navier-Stokes par éléments finis non-conformes de Crouzeix-Raviart, ainsi que d'un ensemble d'équations de bilan de la turbulence de type convection-diffusion, discrétisées par la méthode de volumes finis standard. Un schéma numérique basé sur une discrétisation de volumes finis, permettant de préserver la positivité des échelles turbulentes telles que l'énergie cinétique turbulente (k) et son taux de dissipation (ε), est ainsi proposé dans le cas des modèles k − ε standard, k − ε RNG et leur extension k − ε − v2 − f. La convergence du schéma numérique proposé est ensuite étudiée sur un problème modèle constitué des équations de Stokes incompressibles et d'une équation de convection-diffusion stationnaires, couplées par les viscosités et le terme de production turbulente. Il permet d'aborder la difficulté principale de l'analyse d'un tel problème : l'expression du terme de production turbulente amène à considérer, pour les équations de bilan de la turbulence, un problème de convection-diffusion avec second membre appartenant à L1. Enfin, afin d'aborder le problème instationnaire, on montre la convergence du schéma de volumes finis pour une équation de convection-diffusion modèle avec second membre appartenant à L1. Les estimations a priori de la solution et de sa dérivée en temps sont obtenues dans des normes discrètes dont les espaces correspondants ne sont pas duaux. Un résultat de compacité plus général que le théorème de Kolmogorov usuel, qui se pose comme un équivalent discret du Lemme d'Aubin-Simon, est alors proposé et permet de conclure à la convergence dans L1 d'une suite de solutions discrètes.
2

Modélisation, Analyse et Approximation numérique en mécanique des fluides

Boyer, Franck 03 October 2006 (has links) (PDF)
Ce travail est dédié à la mise en place de modèles d'écoulements de fluides complexes, à leur analyse théorique ainsi qu'au développement et à l'analyse de convergence de schémas numériques appropriés. <br /><br />Une première partie du travail concerne l'étude de modèles dits à interface diffuse pour les écoulements incompressibles multiphasiques. Après une étude assez précise du cadre diphasique, on propose la généralisation au cadre triphasique, ce qui nécessite d'introduire la notion importante de consistance des modèles. Des résultats numériques confirment la pertinence des modèles proposés. Ensuite, on s'intéresse au modèle plus classique de Navier-Stokes non-homogène incompressible pour lequel on établit le caractère bien posé du problème pour des conditions aux limites ouvertes non-linéaires en sortie d'un écoulement. Une brique essentielle de ce travail est l'étude détaillée du problème de traces pour l'équation de transport associée à un champ de vitesse peu régulier. Ce travail, dont l'intérêt dépasse le cadre applicatif décrit ci-dessus, fait l'objet d'un chapitre à part entière.<br /><br />Dans une seconde partie, on s'intéresse à l'approximation numérique par des méthodes de volumes finis des solutions de problèmes elliptiques non-linéaires monotones (du type p-laplacien). Un premier chapitre décrit un certain nombre de résultats obtenus dans le contexte de maillages cartésiens. Un second chapitre est consacré à l'étude d'un cadre géométrique plus général par le biais de méthodes dites en dualité discrète. Une attention particulière est portée au cas où les coefficients du problème présentent des discontinuités spatiales, ce qui mène à des problèmes de transmission non-linéaire entre deux milieux.<br /><br />Le mémoire s'achève par la description de quelques travaux connexes, d'une part sur une classe de schémas VF pour les équations elliptiques linéaires adaptés à des maillages non orthogonaux, et d'autre sur l'étude numérique de problèmes elliptiques couplés 2D/1D issus de la description asymptotique d'écoulements dans des milieux poreux fracturés.
3

Méthodes de volumes finis sur maillages quelconques pour des systèmes d'évolution non linéaires.

Brenner, Konstantin 08 November 2011 (has links) (PDF)
Les travaux de cette thèse portent sur des méthodes de volumes finis sur maillages quelconque pour la discrétisation de problèmes d'évolution non linéaires modélisant le transport de contaminants en milieu poreux et les écoulements diphasiques.Au Chapitre 1, nous étudions une famille de schémas numériques pour la discrétisation d'une équation parabolique dégénérée de convection-reaction-diffusion modélisant le transport de contaminants dans un milieu poreux qui peut être hétérogène et anisotrope. La discrétisation du terme de diffusion est basée sur une famille de méthodes qui regroupe les schémas de volumes finis hybrides, de différences finies mimétiques et de volumes finis mixtes. Le terme de convection est traité à l'aide d'une famille de méthodes qui s'appuient sur les inconnues hybrides associées aux interfaces du maillage. Cette famille contient à la fois les schémas centré et amont. Les schémas que nous étudions permettent une discrétisation localement conservative des termes d'ordre un et d'ordre deux sur des maillages arbitraires en dimensions d'espace deux et trois. Nous démontrons qu'il existe une solution unique du problème discret qui converge vers la solution du problème continu et nous présentons des résultats numériques en dimensions d'espace deux et trois, en nous appuyant sur des maillages adaptatifs.Au Chapitre 2, nous proposons un schéma de volumes finis hybrides pour la discrétisation d'un problème d'écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d'une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d'un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l'on s'appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l'existence d'une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.Le Chapitre 3 porte sur un problème d'écoulement diphasique, dans lequel la courbe de pression capillaire admet des discontinuité spatiales. Plus précisément on suppose que l'écoulement prend place dans deux régions du sol aux propriétés très différentes, et l'on suppose que la loi de pression capillaire est discontinue en espace à la frontière entre les deux régions, si bien que la saturation de l'huile et la pression globale sont discontinues à travers cette frontière avec des conditions de raccord non linéaires à l'interface. On discrétise le problème à l'aide d'un schéma, qui coïncide avec un schéma de volumes finis standard dans chacune des deux régions, et on démontre la convergence d'une solution approchée vers une solution faible du problème continu. Les test numériques présentés à la fin du chapitre montrent que le schéma permet de reproduire le phénomène de piégeage de la phase huile.
4

Etude, mise au point et validation de modèles de turbulence compressible

Perrot, Yohann 19 December 2006 (has links) (PDF)
Cette thèse étudie essentiellement des phénomènes touchant aux domaines aéronautique et spatial. Elle traite par simulations numériques des écoulements dans les tuyères de moteur-fusée, les écoulements d'arrière-corps d'avions, et les écoulements supersoniques en présence d'interactions onde de choc/couche limite. La motivation principale de ce travail a été de comprendre les différents facteurs qui gouvernent ces écoulements. Ce travail, soutenu par le groupe SNECMA, est consacré plus particulièrement à l'étude et à la modélisation des phénomènes en proche paroi en utilisant le code industriel N3S-Natur. L'objectif visé est d'améliorer les chaînes de conception et de développement industriels (RANS) et de développer de nouvelles méthodes de calcul (LES/DES) pour une meilleure maîtrise des systèmes énergétiques. Ainsi, les modèles mis au point dans cette étude ont été d'abord validés sur une variété d'écoulement simple (couche limite compressible, jet supersonique,...) avant d'être appliqués aux écoulements complexes (tuyères avec film de refroidissement, arrière-corps 3D, interaction visqueuse et décollement tridimensionnel). Une partie de l‘étude a été consacrée aux phénomènes transitoires d'amorçage rapide des tuyères propulsives. En ce qui concerne les aspects instationnaires, il a été montré, à travers l'étude d'une interaction onde de choc/couche limite, que la DES (Detached Eddy Simulation), tout comme la LES (Large Eddy Simulation), constitue un outil pertinent, permettant une prédiction fine des caractéristiques moyennes et fluctuantes des écoulements supersoniques décollés. Les résultats obtenus dans ce travail confirment la portée et l'intérêt scientifiques des études en aérodynamique supersonique.
5

Méthodes de volumes finis sur maillages quelconques pour des systèmes d'évolution non linéaires / Finite volume methods on general meshes for nonlinear evolution systems

Brenner, Konstantin 08 November 2011 (has links)
Les travaux de cette thèse portent sur des méthodes de volumes finis sur maillages quelconque pour la discrétisation de problèmes d'évolution non linéaires modélisant le transport de contaminants en milieu poreux et les écoulements diphasiques.Au Chapitre 1, nous étudions une famille de schémas numériques pour la discrétisation d'une équation parabolique dégénérée de convection-reaction-diffusion modélisant le transport de contaminants dans un milieu poreux qui peut être hétérogène et anisotrope. La discrétisation du terme de diffusion est basée sur une famille de méthodes qui regroupe les schémas de volumes finis hybrides, de différences finies mimétiques et de volumes finis mixtes. Le terme de convection est traité à l'aide d'une famille de méthodes qui s'appuient sur les inconnues hybrides associées aux interfaces du maillage. Cette famille contient à la fois les schémas centré et amont. Les schémas que nous étudions permettent une discrétisation localement conservative des termes d'ordre un et d'ordre deux sur des maillages arbitraires en dimensions d'espace deux et trois. Nous démontrons qu'il existe une solution unique du problème discret qui converge vers la solution du problème continu et nous présentons des résultats numériques en dimensions d'espace deux et trois, en nous appuyant sur des maillages adaptatifs.Au Chapitre 2, nous proposons un schéma de volumes finis hybrides pour la discrétisation d'un problème d'écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d'une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d'un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l'on s'appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l'existence d'une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.Le Chapitre 3 porte sur un problème d'écoulement diphasique, dans lequel la courbe de pression capillaire admet des discontinuité spatiales. Plus précisément on suppose que l'écoulement prend place dans deux régions du sol aux propriétés très différentes, et l'on suppose que la loi de pression capillaire est discontinue en espace à la frontière entre les deux régions, si bien que la saturation de l'huile et la pression globale sont discontinues à travers cette frontière avec des conditions de raccord non linéaires à l'interface. On discrétise le problème à l'aide d'un schéma, qui coïncide avec un schéma de volumes finis standard dans chacune des deux régions, et on démontre la convergence d'une solution approchée vers une solution faible du problème continu. Les test numériques présentés à la fin du chapitre montrent que le schéma permet de reproduire le phénomène de piégeage de la phase huile. / In Chapter 1 we study a family of finite volume schemes for the numerical solution of degenerate parabolic convection-reaction-diffusion equations modeling contaminant transport in porous media. The discretization of possibly anisotropic and heterogeneous diffusion terms is based upon a family of numerical schemes, which include the hybrid finite volume scheme, the mimetic finite difference scheme and the mixed finite volume scheme. One discretizes the convection term by means of a family of schemes which makes use of the discrete unknowns associated to the mesh interfaces, and contains as special cases an upwind scheme and a centered scheme. The numerical schemes which we study are locally conservative and allow computations on general multi-dimensional meshes. We prove that the unique discrete solution converges to the unique weak solution of the continuous problem. We also investigate the solvability of the linearized problem obtained during Newton iterations. Finally we present a number of numerical results in space dimensions two and three using nonconforming adaptive meshes and show experimental orders of convergence for upwind and centered discretizations of the convection term.In Chapter 2 we propose a finite volume method on general meshes for the numerical simulation of an incompressible and immiscible two-phase flow in porous media. We consider the case that it can be written as a coupled system involving a degenerate parabolic convection-diffusion equation for the saturation together with a uniformly elliptic equation for the global pressure. The numerical scheme, which is implicit in time, allows computations in the case of a heterogeneous and anisotropic permeability tensor. The convective fluxes, which are non monotone with respect to the unknown saturation and discontinuous with respect to the space variables, are discretized by means of a special Godunov scheme. We prove the existence of a discrete solution which converges, along a subsequence, to a solution of the continuous problem. We present a number of numerical results in space dimension two, which confirm the efficiency of the numerical method.Chapter 3 is devoted to the study of a two-phase flow problem in the case that the capillary pressure curve is discontinuous with respect to the space variable. More precisely we assume that the porous medium is composed of two different rocks, so that the capillary pressure is discontinuous across the interface between the rocks. As a consequence the oil saturation and the global pressure are discontinuous across the interface with nonlinear transmission conditions. We discretize the problem by means of a numerical scheme which reduces to a standard finite volume scheme in each sub-domain and prove the convergence of a sequence of approximate solutions towards a weak solution of the continuous problem. The numerical tests show that the scheme can reproduce the oil trapping phenomenon.

Page generated in 0.0855 seconds