Spelling suggestions: "subject:"scheduled service network design"" "subject:"uscheduled service network design""
1 |
Supply Chain Oriented Integrated Tactical Planning Method For Intercontinental Rail Freight TransportShan, Jing 29 October 2024 (has links)
This thesis addresses integrated challenges within the global supply chain and intercontinental rail freight transport, establishing the foundation for a new research area. First, this thesis focuses on the development of unified SCOR-Rail Key Performance Indicators (KPIs) for intercontinental rail freight transport, as well as initial analysis on Eurasian rail freight. It also proposes various rail supply chain strategies to differentiate rail services, including efficient, continuous replenishment, and responsive rail supply chain strategies that support market segmentation and service differentiation.
The proposed Integrated Tactical Planning Method (ITPM) is a supply chain-oriented planning approach for intercontinental rail freight transport. It considers the intercontinental rail freight network's complexities, such as multiple border crossings and transshipments at border crossing terminals, the unique characteristics of different train lengths across different rail systems, as well as multiple stakeholders such as terminals, railway undertakings, infrastructure providers, and shippers and forwarders.
ITPM offers optimization models (I-FSND and I-SSND) that simultaneously account for both the supply chain and rail system sides. Both models simulate the complexities of intercontinental rail freight operations. The I-FSND model calculates the train service frequency on each route during the planning period, whereas the I-SSND model considers the synchronization of each order at border-crossing terminals across different rail systems. Furthermore, both models include a rejection mechanism and consider transit time differences on the same arc for the main transit, with the I-SSND model determining the duration time of each order at terminals. In the I-FSND model, a weighted goal programming method optimizes resource allocation, balancing service quality, profit, total number of accepted containers through the network, and border crossing terminals' capacity deficiency. The potential capacity deficiencies—information is useful when making future investment decisions.
The ITPM is a powerful tool for intercontinental rail freight planners, the proposed optimization models I-FSND and I-SSND ensure more efficient utilization of resources while simultaneously satisfying heterogeneous transport service requirements of the supply chain. Rail planners can employ the I-FSND model for network capacity analysis across various scenarios, especially when the specific timetable of train services is not a primary concern, while I-SSND model could be used to more operational analysis. Furthermore, ITPM is not only applicable to intercontinental rail freight, but also to rail freight transport networks with multiple border crossings, such as the Trans-European Transport Network (TEN). The initial application of these models in Eurasian rail freight shows promising potential for broader implementation in intercontinental rail freight transport, particularly in creating new business opportunities to meet the diverse transport demands of the supply chain.:1 Intercontinental rail freight transport 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Development of intercontinental rail freight transport . . . . . . . . . . . 1
1.1.2 Need for a supply chain-oriented planning method for intercontinental
rail freight transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Intercontinental rail freight planning problems . . . . . . . . . . . . . . . . . . . 5
1.2.1 Limitations of current rail planning . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Intercontinental rail freight transport in supply chain planning . . . . . . 9
1.2.3 Scientific gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Collaborations in the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Service quality assessment of intercontinental rail transport 20
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Existing research in international freight rail transport . . . . . . . . . . . . . . . 23
2.2.1 Stakeholders and processes of international rail transport . . . . . . . . 23
2.2.2 International rail services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Current performance measurement of rail transport . . . . . . . . . . . 26
2.2.4 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Development of SCOR-Rail KPIs for international rail services . . . . . . . . . . . 28
2.3.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Responsiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.5 Asset efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Initial assessment of Eurasian rail transport . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.2 Responsiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.4 Asset efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.5 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Improvement measures of current Eurasian rail transport . . . . . . . . . . . . . 43
2.5.1 Service differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.2 Priority rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3 Heterogeneous rail supply chain strategies 48
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Existing research on rail service differentiation . . . . . . . . . . . . . . . . . . . 51
3.3 Development of railway supply chain strategies . . . . . . . . . . . . . . . . . . . 53
3.3.1 Efficient RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Continuous replenishment RSC . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Responsive RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 International rail service differentiation . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4 Integrated tactical planning method 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Existing research on information integration in rail transport . . . . . . . . . . . 65
4.3 Information integration in international rail freight transport . . . . . . . . . . . 67
4.3.1 Information quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Information integration phases . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 Information evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Hierarchical information integration in rail planning . . . . . . . . . . . . . . . . 70
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5 Integrated planning of intercontinental rail freight transport with I-FSND model 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.1 Basics of rail planning and SND . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 SND in freight transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.4 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 I-FSND model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.3 Weighted goal programming method . . . . . . . . . . . . . . . . . . . . . 92
5.5 Case study: Eurasian rail freight transport . . . . . . . . . . . . . . . . . . . . . . 94
5.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5.2 Scenarios generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6.1 Single goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6.2 Multiple goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.7 Conclusion and future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6 Scheduled service network design for intercontinental rail freight transport 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.1 Intercontinental freight transport-Eurasian rail freight transport . . . . . 113
6.2.2 SSND in freight transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.3 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Mathematical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Generation of the time-space network . . . . . . . . . . . . . . . . . . . . 119
6.3.3 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.1 Construction of test instances . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.2 Synchronization of orders at border crossing terminals . . . . . . . . . . 127
6.4.3 Effects of differentiating train services during main transit . . . . . . . . 129
6.4.4 Effects of delay tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.5 Impact of border crossing time of European borders . . . . . . . . . . . 134
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6 Conclusion and future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7 Conclusion and future directions 140
7.1 Main conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2 Recommendations for practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Bibliography 148
Summary 168
|
2 |
Un système réactif d'aide à la décision pour le transport intermodal de marchandises / A reactive decision support system for intermodal freight transportationWang, Yunfei 02 March 2017 (has links)
Le transport fluvial de conteneurs constitue une activité économique importante qui suscite un intérêt grandissant de la part de scientifiques. Considéré comme durable et économique, le transport par barge a été identifié comme étant une alternative compétitive pour le transport de marchandises, en complément des modes traditionnels de transport, routier et ferroviaire. Néanmoins, les travaux de recherche en rapport avec la planification et le management du transport par barge, en particulier dans le contexte du transport intermodal, sont encore peu abondants. Le but de cette thèse est d’apporter une contribution dans ce domaine, par la proposition de modèles et de méthodes de planification et gestion avancées, dans le cadre d’un système d’aide à la décision pour le transport de conteneurs par barge développé pour accompagner les opérateurs de transport. La méthodologie proposée fait appel à des concepts et principes de gestion du revenu, des ressources et des services de transport pour la conception de plans de services réguliers avec horaires, au niveau tactique. Les opérateurs de transport peuvent ainsi offrir des plans de transport avec des services plus flexibles pour leurs clients, tout en assurant un meilleur niveau de fiabilité. Plus de demandes de transport pourront ainsi être satisfaites, avec globalement une plus grande satisfaction des chargeurs. Une originalité importante proposée par notre approche est l’utilisation de principes et techniques de gestion du revenu (segmentation du marché, classes tarifaires...) aussi bien au niveau opérationnel de la modélisation qu’au niveau tactique. Les problèmes d’optimisation sont formalisés sous forme de modèles de programmation linéaire mixte en nombres entiers (PLNE), implémentés et testés sous différentes configurations de réseaux de transport et différents scénarios de demandes, et ce pour chaque niveau de décision. Au niveau tactique, une nouvelle approche de résolution, combinant la recherche adaptative à voisinage large (ALNS) et la recherche taboue, est proposée pour résoudre des problèmes PLNE de grande taille. Une plateforme de simulation, qui intègre les niveaux tactique et opérationnel de prise de décision, est proposée pour la validation du système d’aide à la décision sous différentes configurations : différentes topologies du réseau physique, différents paramètres pour la gestion du revenu, différents degrés de précision caractérisant les prévisions de demande. Pour l’analyse des résultats numériques ainsi obtenus, plusieurs types d’indicateurs de performance sont proposés et utilisés. / Barge transportation is an important research topic that started to draw increasing scientific attention in the recent decade. Considered as sustainable, environment-friendly and economical, barge transportation has been identified as a competitive alternative for freight transportation, complementing the traditional road and rail modes. However, contributions related to barge transportation, especially in the context of intermodal transportation, are still scarce. The objective of this thesis is to contribute to fill this gap by proposing a reactive decision support system for freight intermodal barge transportation from the perspective of the carriers. The proposed system incorporates resource and revenue management concepts and principles to build the optimal set of scheduled services plans at the tactical level. Carriers may thus benefit from transportation plans offering increased flexibility and reliability. They could thus serve more demands and better satisfy customers. One novelty of the approach is the application of revenue management considerations (e.g., market segmentation and price differentiation) at both operational and tactical planning levels. The optimization problems are mathematically formalized and mixed integer linear programming (MILP) models are proposed, implemented and tested against various network settings and demand scenarios, for each decision level. At the tactical level, a new solution approach, combining adaptive large neighborhood search (ALNS) and Tabu search is designed to solve large scale MILP problems. An integrated simulation framework, including the tactical and the operational levels jointly, is proposed to validate the decision support system in different settings, in terms of physical network topology, revenue management parameters and accuracy degree of demand forecasts. To analyze the numerical results corresponding to the solutions of the optimization problems, several categories of performance indicators are proposed and used.
|
Page generated in 0.0645 seconds