• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1759
  • 506
  • 222
  • 176
  • 60
  • 39
  • 30
  • 27
  • 24
  • 21
  • 19
  • 17
  • 16
  • 11
  • 11
  • Tagged with
  • 3469
  • 609
  • 477
  • 464
  • 414
  • 407
  • 394
  • 377
  • 317
  • 270
  • 261
  • 248
  • 239
  • 238
  • 232
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

A modified shifting bottleneck approach to job shop scheduling with sequence dependent setups (MSBSS)

Sun, Xiaoqing, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 119-128). Also available on the Internet.
222

A stochastic project scheduling problem with resource constraints

Tai, Chia-Hung C. January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 117-118). Also available on the Internet.
223

Adaptive Scheduling in a Distributed Cyber-Physical System: A case study on Future Power Grids

Choudhari, Ashish 01 December 2015 (has links)
Cyber-physical systems (CPS) are systems that are composed of physical and computational components. CPS components are typically interconnected through a communication network that allows components to interact and take automated actions that are beneficial for the overall CPS. Future Power-Grid is one of the major example of Cyber-physical systems. Traditionally, Power-Grids use a centralized approach to manage the energy produced at power sources or large power plants. Due to the advancement and availability of renewable energy sources such as wind farms and solar systems, there are more number of energy sources connecting to the power grid. Managing these large number of energy sources using a centralized technique is not practical and is computationally very expensive. Therefore, a decentralized way of monitoring and scheduling of energy across the power grid is preferred. In a decentralized approach, computational load is distributed among the grid entities that are interconnected through a readily available communication network like internet. The communication network allows the grid entities to coordinate and exchange their power state information with each other and take automated actions that lead to efficient consumption of energy as well as the network bandwidth. Thus, the future power grid is appropriately called a "Smart-Grid". While Smart-Grids provide efficient energy operations, they also impose several challenges in the design, verification and monitoring phases. The computer network serves as a backbone for scheduling messages between the Smart-Grid entities. Therefore, network delays experienced by messages play a vital role in grid stability and overall system performance. In this work, we study the effects of network delays on Smart-Grid performance and propose adaptive algorithms to efficiently schedule messages between the grid entities. Algorithms proposed in this work also ensure the grid stability and perform network congestion control. Through this work, we derive useful conclusions regarding the Smart-Grid performance and find new challenges that can serve as future research directions in this domain.
224

Group-based parallel multi-scheduling methods for grid computing

Abraham, G. T. January 2016 (has links)
With the advent in multicore computers, the scheduling of Grid jobs can be made more effective if scaled to fully utilize the underlying hardware and parallelized to benefit from the exploitation of multicores. The fact that sequential algorithms do not scale with multicore systems nor benefit from parallelism remains a major challenge to scheduling in the Grid. As multicore systems become ever more pervasive in our computing lives, over reliance on such systems for passive parallelism does not offer the best option in harnessing the benefits of their multiprocessors for Grid scheduling. An explicit means of exploiting parallelism for Grid scheduling is required. The Group-based Parallel Multi-scheduler for Grid introduced in this work is aimed at effectively exploiting the benefits of multicore systems for Grid job scheduling by splitting jobs and machines into paired groups and independently multi-scheduling jobs in parallel from the groups. The Priority method splits jobs into four priority groups based on job attributes and uses two methods (SimTog and EvenDist) methods to group machines. Then the scheduling is carried out using the MinMin algorithm within the discrete group pairs. The Priority method was implemented and compared with the MinMin scheduling algorithm without grouping (named ordinary MinMin in this research). The analysis of results compared against the ordinary MinMin shows substantial improvement in speedup and gains in scheduling efficiency. In addition, the Execution Time Balanced (ETB) and Execution Time Sorted then Balanced (ETSB) methods were also implemented to group jobs in order to improve on some deficiencies found with the Priority method. The two methods used the same machine grouping methods as used with the Priority method, but were able to vary the number of groups and equally exploited different means of grouping jobs to ensure equitability of jobs in groups. The MinMin Grid scheduling algorithm was then executed independently within the discrete group pairs. Results and analysis shows that the ETB and ETSB methods gain still further improvement over MinMin compared to the Priority method. The conclusion is reached that grouping jobs and machines before scheduling improves the scheduling efficiency significantly.
225

Applying an Analytical Approach to Shop-Floor Scheduling: A Case Study

Swinehart, Kerry, Yasin, Mahmoud, Guimaraes, Eduardo 01 January 1996 (has links)
In the light of the complex and dynamic factors that exist in a typical production facility, manual development of an optimal shop-floor schedule is computationally impractical. This paper discusses the effective use of an heuristic algorithm approach to shop-floor scheduling at the TRW Rack and Pinion Division (RPD) Plant in Rogersville, Tennessee. The study documents the introduction of FAST, a computerised scheduling system that employs the Genetic Optimisation Algorithm. Results demonstrate a real potential advantage using this system for shop-floor scheduling, thus facilitating TRWs journey of continuous improvement.
226

Theory and Practice in Cloud Datacenters with Distributed Schedulers

Alshahrani, Reem Abdullah 06 August 2019 (has links)
No description available.
227

Offline-Online Multiple Agile Satellite Scheduling using Learning and Evolutionary Optimization

Chatterjee, Abhijit January 2023 (has links)
The recent generation of Agile Earth Observation Satellite (AEOS) has emerged to be highly effective due to its increased attitude maneuvering capabilities. However, due to these increased degrees of freedom in maneuverability, the scheduling problem has become increasingly difficult than its non-agile predecessors. The AEOS scheduling problem consists of finding an optimal assignment of user-requested imaging tasks to the respective AEOSs in their orbits by satisfying the operational resource constraints in a specified time frame. Some of these tasks might require imaging the same area of interest (AOI) multiple times, while in some tasks, the AOIs are too large for the AEOS to image in a single attempt. Some tasks might even arise while the AEOSs are preoccupied with existing tasks. This thesis focuses on formulating the AEOS scheduling models where onboard energy and memory constraints while operating and the task specifications are diverse. A mixed-integer non-linear scheduling problem with a reward factor has been considered in order to handle multiple scan requirements for a task. Although initially, it is assumed that the AOIs are small, this work is extended to a three-stage optimization framework to handle the segmentation of large AOIs into smaller regions that can be imaged in a single scan. The uncertainty regarding scan failure is handled through a Markov Decision Process (MDP). These two proposed methods have significant benefits when tasks are available to schedule prior to the mission. However, they lack the flexibility to accommodate newly arrived tasks during the mission. When multiple new tasks arrive during the mission, predictive scheduling based on learning historical data of task arrivals is proposed, which can schedule tasks in an online manner faster than complete rescheduling and minimize disruption from the original schedule. Evolutionary optimization-based solution methodologies are proposed to solve these models and are validated with simulations. / Thesis / Doctor of Philosophy (PhD)
228

INTEGRATION OF PROCESS PLANNING AND JOB SCHEDULING IN A MANUFACTURING JOB SHOP

PALLAPATI, RAJU PAUL January 2002 (has links)
No description available.
229

INSTRUCTION SCHEDULING TO HIDE LOAN/STORE LATENCY IN IRREGULAR ARCHITECTURE EMBEDDED PROCESSORS

BHALGAT, ASHISH ZUMBARLAL 11 October 2001 (has links)
No description available.
230

Applying Data Mining to Job-Shop Scheduling using Regression Analysis

Innani, Alok 18 December 2004 (has links)
No description available.

Page generated in 0.4201 seconds