• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Different images of science : a study of how science is constituted in exhibitions /

Davidsson, Eva, Jakobsson, Anders. Sørensen, Helene, January 2008 (has links)
Disputats, Lunds universitet, 2008. / Findes også på internet (PDF-format): http://dspace.mah.se/dspace/bitstream/2043/6011/1/thesisfinal.pdf.
12

Tapping into Floor Staff: Using the knowledge of floor staff to conduct formative evaluations of exhibits in a Canadian science centre

Lebel, Josée January 2008 (has links)
Most science centres in Canada employ science-educated floor staff to motivate visitorsto have fun while enhancing the educational reach of the exhibits. Although bright andsensitive to visitors’ needs, floor staff are rarely consulted in the planning,implementation, and modification phases of an exhibit. Instead, many developmentteams rely on costly third-party evaluations or skip the front-end and formativeevaluations all together, leading to costly errors that could have been avoided. This studywill seek to reveal a correlation between floor staff’s perception of visitors’ interactionswith an exhibit and visitors’ actual experiences. If a correlation exists, a recommendationcould be made to encourage planning teams to include floor staff in the formative andsummative evaluations of an exhibit. This is especially relevant to science centres withlimited budgets and for whom a divide exists between floor staff and management.In this study, a formative evaluation of one exhibit was conducted, measuring both floorstaff’s perceptions of the visitor experience and visitors’ own perceptions of the exhibit.Floor staff were then trained on visitor evaluation methods. A week later, floor staff andvisitors were surveyed a second time on a different exhibit to determine whether anincrease in accuracy existed.The training session increased the specificity of the motivation and comprehensionresponses and the enthusiasm of the staff, but not their ability to predict observedbehaviours with respect to ergonomics, learning indicators, holding power, and successrates. The results revealed that although floor staff underestimated visitors’ success ratesat the exhibits, staff accurately predicted visitors’ behaviours with respect to holdingpower, ergonomics, learning indicators, motivation and comprehension, both before andafter the staff training.
13

Science is Primary - Children Thinking and Learning in theChemistry Laboratory

Zhang, Ning January 2005 (has links)
The goal of primary science education is to foster children’s interest, develop positive science attitudes and promote science process skills development. Learning by playing and discovering provides several opportunities for children to inquiry and understand science based on the first–hand experience. The current research was conducted in the children’s laboratory in Heureka, the Finnish science centre. Young children (aged 7 years) which came from 4 international schools did a set of chemistry experiments in the laboratory. From the results of the cognitive test, the pre-test, the post-test, supported by observation and interview, we could make the conclusion that children enjoyed studying in the laboratory. Chemistry science was interesting and fascinating for young children; no major gender differences were found between boys and girls learning in the science laboratory. Lab work not only encouraged children to explore and investigate science, but also stimulated children’s cognitive development.
14

Modelování a simulace rizik veřejných investičních projektů / Modeling and simulation of public investment project risk

Pavelková, Martina January 2015 (has links)
The results of the investment projects are dependent on the quality of project preparation in the pre-investment stage and well-executed implementation. High-quality preparation of the projects, their evaluation and selection of require key risk factors and uncertainties, the impact of these factors on the results of the project and consider measures on their elimination or reduction. The purpose of the risk management of the project is therefore in advance to know the sources of possible threats to the project and to prepare measures that would lead to a reduction in the potential impacts for the project to an acceptable value. The basic aim of project risks management is then increase the likelihood of their success and to minimize the risk of such failure, including their rejection of the venture project too, which could threaten the financial stability of the investor and lead to its decline. The thesis is focused on the examination of the different approaches to identification of risks and uncertainties and their subsequent evaluation on investment project of public corporations, including the impact of the preparation of the project on its own implementation and subsequent operation. At the same time they recommended possible measures to reduce the risk of this project in terms of their costs and the size of the risk reduction. Part of the work is also an analysis of the risks and benefits of the projects planned, realized and terminated by The South Moravian Region and the draft Project Risk Register and the Project Opportunities Register, where appropriate, the risk management process for The Regional Authority of The South Moravian Region.
15

Citizens and Contemporary Science Ways to dialogue in science centre contexts.

Lundberg, Karin January 2005 (has links)
The current paper presents a study conducted at At-Bristol Science Centre, UK. It is a front-end evaluation for the “Live Science Zone” at At-Bristol, which will be built during the autumn of 2004. It will provide a facility for programmed events and shows, non-programmed investigative activities and the choice of passive or active exploration of current scientific topics. The main aim of the study is to determine characteristics of what kind of techniques to use in the Live Science Zone. The objectives are to explore what has already been done at At-Bristol, and what has been done at other science centres, and to identify successful devices. The secondary aim is mapping what sorts of topics that visitors are actually interested in debating. The methods used in the study are deep qualitative interviews with professionals working within the field of science communication in Europe and North America, and questionnaires answered by visitors to At-Bristol. The results show that there are some gaps between the intentions of the professionals and the opinions of the visitors, in terms of opportunities and willingness for dialogue in science centre activities. The most popular issue was Future and the most popular device was Film.
16

Grundskoleelevers design i lärande : En studie om lärprocesser i programmering

Sparf, Maria January 2020 (has links)
The aim of this study is to contribute to the knowledge about how pupils design their learning in programming. It is mainly the learning process, how pupils deal with problems in programming and how they become, are and remain engaged in the tasks, which is of interest. Programming can be understood in many ways; coding, a digital competence, creativity, or ways to solve problems. The digitalisation of society has also evoked a need to learn programming from an early age in compulsory school. In this study, programming is seen as a part of the digital competence that all pupils should have the opportunity to develop, which is a common thread that runs throughout compulsory school.   The study was conducted during programming lessons at three science centres in Sweden. The centres had previous experience in teaching programming. This was used at the time of the study by schools that in this way could offer pupils to try programming even before it became part of the compulsory teaching. The lessons were adapted for novices in programming and were conducted as part of the regular school day for pupils in grades 1-8.   The theoretical framework is based on design-oriented theory with a focus on how settings and design for learning includes both opportunities and dilemmas for learning. It provides a basis for the analysis of pupils’ approaches when learning programming as well as how different types of engagement relates to their design in learning. The results are presented in two articles, which contribute with different aspects of learning. Together the articles provide a picture of pupils’ learning design within programming in compulsory school.    The first article highlights knowledge of five different approaches that pupils used to solve assignments using programming. The qualitatively different ways that pupils used during the observed lessons were mathematically, trial and error, step-by-step, routine as well as aesthetically.  Each of these approaches allows pupils to use and practice different abilities that are important for programming. The abilities are compared to, but not equal to computational thinking (CT), which (in its turn) is linked to competencies that are important for an active participation in a digital society.    The second article contributes to the understanding of how behavioural, emotional, and cognitive engagement can be identified when pupils are learning programming. To understand how the different types of engagement are individually important, yet intertwined and influencing each other, is keen knowledge. The results show how different types of engagement become visible during programming lessons. Furthermore, it is discussed how the pupils’ identified engagement can be related to how their learning process is designed.  In the study, taken as a whole, the results of the two articles show how pupils become designers in their programming learning process. The pupils designed their learning throughout their learning process regarding to the settings, to the approach they used and in the way they became engaged. / Studiens övergripande syfte är att fördjupa kunskapen om hur elever designar sitt lärande i programmering. Det är främst elevernas lärandeprocess, hur de tar sig an problem inom programmering och hur de blir, är och förblir engagerade i uppgifterna, som är av intresse. Programmering kan förstås på många olika sätt, kodning, en digital kompetens, kreativitet eller sätt att lösa problem. Digitaliseringen i samhället har även aktualiserat behovet av att lära sig programmering redan från tidig ålder i grundskolan. I denna studie ses programmering som en del av den digitala kompetens alla elever ska ha möjlighet att utveckla och som finns med som en röd tråd genom hela grundskolan.    Studien genomfördes under programmeringslektioner på tre science centers i Sverige. Science center har lång erfarenhet av att undervisa i programmering för barn och unga. Detta nyttjades vid tidpunkten för studien av skolor som på det sättet kunde erbjuda eleverna att prova på programmering redan innan det blev en del av den obligatoriska undervisningen. Lektionerna var anpassade för nybörjare i programmering och genomfördes som en del av skoldagen för elever i årskurs 1-8.    Det teoretiska ramverket har utgångspunkt i designorienterad teori, med fokus på hur iscensättning och design för lärande, som omfattar både möjligheter och dilemman för lärande. Ramverket ger en grund för hur elevers lärprocess och engagemang för att lära sig programmering kan analyseras.   Resultaten redovisas i form av två artiklar som tillsammans ge en bild av design för och i lärande under programmeringslektioner. Den första artikeln bidrar med kunskap om fem olika tillvägagångssätt (i artikel 1 på engelska, approach) som elever använde för att lösa uppgifter med hjälp av programmering. De kvalitativt olika sätt som eleverna använde under de observerade lektionerna var matematiskt, fel- och försök igen, steg-för-steg, rutin samt estetiskt. Var och ett av dessa tillvägagångssätt gav eleverna möjlighet att använda och träna olika förmågor som är viktiga för att kunna programmera. Förmågorna jämförs, men likställs inte med datalogiskt tänkande (CT) vilket kan anses vara knutet till kompetenser som är viktiga för att aktivt kunna delta i ett digitalt samhälle.   Den andra artikelns kunskapsbidrag är att förstå hur beteendemässigt, emotionellt och kognitivt engagemang kan identifieras när elever programmerar. Att förstå hur de olika typerna av engagemang är viktiga var och en för sig, samtidigt som de är sammanflätade och påverkar varandra, är angelägen kunskap. Resultaten visar hur olika typer av engagemang blir synliga under programmeringslektioner. Vidare diskuteras hur elevernas identifierade engagemang kan relateras till hur deras lärprocess designas.   I den sammanlagda studien visar resultaten från de båda artiklarna på hur elever blev designers för och i sitt lärande i programmering. Eleverna designade sitt lärande genom hela lärprocessen med hänseende till iscensättningen, vilka tillvägagångssätt de använde och hur de hade möjlighet att vara engagerade på olika sätt.
17

An exploration of the teaching practices of education officers at a science centre in Pretoria, Gauteng Province

Bilankulu, Hasani Justice 16 November 2020 (has links)
Abstract in English, Tswana and Xitsonga / Education officers based at science centres and museums play a significant role in teaching the visiting learners science. However, little is known about their teaching practices at these centres. The purpose of this study was to investigate the teaching practices of education officers when teaching science in a science centre environment. The focus of this study was on the education officers’ knowledge and instructional strategies used in teaching science at a science centre in Pretoria, Gauteng province. A qualitative case study approach was used. Data was collected from the three participating education officers using semi-structured interviews and observations. Data was analysed separately from each case using education officers’ knowledge framework guidance. The findings from this study indicate that although education officers have shown an adequate content knowledge in teaching science at the science centre their teaching method was teacher-centred and non-interactive and show-and-tell strategies were more common amongst the education officers. The study also revealed that education officers did not use their resources/exhibits effectively in teaching science. It is recommended in this study that intensive training of education officers is required before they can interact with the visiting learners. / Baokamedi ba thuto ba kwa mafelong a maranyane le dimusiamo ba tshameka karolo e e botlhokwa mo go ruteng barutwana ba ba etileng dithuto tsa maranyane. Mme goitsiwe go le gonnye ka mekgwa e ba e dirisang kwa mafelong a. Morero wa thuto e ne e le go tlhatlhoba mekgwa ya baokamedi ba thuto fa ba ruta dithuto tsa maranyane mo tikologong ya lefelo la maranyane. Ntlhakgolo ya thuto e e ne e lebile kitso le mekgwa e e dirisiwang mo go ruteng maranyane mo lefelong la maranyane kwa Pretoria, porofensing ya Gauteng. Mokgwa wa boleng ba kgetsi thuta o dirisitswe. Tshedimosetso e tserwe mo baokameding ba thuto ba bararo ba ba neng ba tsere karolo ka mokgwa wa dipotsolotso tsa seka-kago le tebelelo. Tshedimosetso e tlhatlhobilwe kgetsi le kgetsi go dirisiwa kgakololo ya lenaneo la kitso ya baokamedi ba thuto. Dipitlhelelo tsa thuto e di supa gore le ga baokamedi ba thuto ba bontsha kitso e e lekaneng mo go ruteng maranyane kwa lefelong la dithuto tsa maranyane mekgwa ya bone ya go ruta e ne e lebagane bone gape e sena kamano mo go dimo ga moo mekgwa ya go buwa le go bontsha e ne e le tlwaelo gareng ga baokamedi ba thuto. Thuto e bontshitse gape gore baokamedi ba thuto ba ne ba sa dirisi didiriswa ka natlafalo mo go ruteng maranyane. Kgakololo go tswa mo thutong eno ke gore baokamedi ba thuto ba tlhoka katiso e e utlwalang pele ba ka kopana le baithuti ba ba etang. / Vadyondzisi lava kumekaka eka ndhawu ya science na museum va tlanga xiphemu xa nkoka swinene eku dyondziseni ka vadyondzi lava va endzelaka ndhawu leyi. Hambi swiri tano, i swi ntsongo leswi tivekaka hi madyondziselo ya science eka ndhawu leyi. Xikongomelo nkulu xa dyondzo leyi akuri ku lavisisa tindlela ta madyondziselo ya vadyondzisi loko va dyondzisa tidyondzo ta science endhawini leyi ya tidyondzo science. Dyondzo leyi ayi kongomisiwile eka vutivi na tindlela leti vadyondzisi va letelaka ha kona vadyondzi edhawini leyi ya science ePitori, eka Xifundzha nkulu xa Gauteng. Maendlelo ya qualitative case study ya tirhisiwile eka vulavisisi lebyi. Vuxokoxoko byi hlengeletiwile ku sukela eka vadyodzisi vanharhu va science hi ndlela ya mbulavurisano na vulangutisisi bya vukheta swinene. Vuxokoxoko lebyi byi hleriwile hi ku hambana hambana hi kuya hi vutivi bya vadyondzisi lava vanharhu. Hambi leswi vadyondzisi lava va nga kombisa vutivi byo ringanela no twisisa tidyondzo ta science eka ndhawu leyi, swi kumekile leswaku madyodziselo ya vona aya pfumeleli vadyondzi ku va teka xiphemu eku tirhiseni ka swikombiso na switirhisiwa swo pfuneta ku twisisa tidyondyo ta science. Vadyondzisi a va tirhisa ndlela yo vulavula no komba switithisiwa na swikombiso swo pfuneta tidyondzo leti ehandle ko pfumelela vana ku tirhisa swilo leswi swa science. Ku yisa emahlweni, swi kumekile leswaku vadyondzisi a va tirhisi switirhisiwa kumbe swikombiso swo va pfuneta eka dyondzo ya science hi ku hetiseka. Hi ku landzelela dyondzo leyi, ku tsundzuxiwa leswaku vadyondzisi va kuma dyondzo yo enta no enela ku suka eka va vutivi byo antswa va nga si nyikiwa mpfumelelo wo dyondzisa vana tidyondzo ta science. / Science and Technology Education / M. Ed. (Specialisation in Natural Science Education)

Page generated in 0.0646 seconds