Spelling suggestions: "subject:"screenprinted electrode"" "subject:"screenprinted clectrode""
1 |
Electrochemical Measurements of Salivary Amylase ActivityHöckerdal, Henrik January 2012 (has links)
Stress constitutes a more and more common cause for many health disorders inmodern society. Salivary -amylase (AA), the most abundant enzyme in humanwhole saliva, has in recent years been found to be a good surrogate biomarker formonitoring stress levels in individuals. This work aims to form the foundation ofa novel approach for measuring the activity of the enzyme in saliva samples bymeans of electrochemistry. The idea is to implement several enzymes along witha starch substrate and an electron mediator in a single system. This system isthen to be coated onto a screen-printed electrode (SPE), which is used along withan electrical component, designed to give rise to a quantifiable, electrical signalwhen the starch is broken down by the AA contained in an added saliva sample.Several such enzyme systems are here qualitatively evaluated. As electron mediator,ferro-/ferricyanide is used. Two different enzymes, glucose oxidase (GOx) andpyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH), are testedfor making up the saccharide oxidising part of the system. Both prove themselvescapable in terms of qualitatively giving rise to an electrical signal. But, in terms ofinternal quantitative comparisons between the two, no practical experiments areperformed in this work. In some runs, the enzyme -glucosidase (AG) is used asan intermediate for breaking down the AA/starch oligosaccharide products intomonosaccharides. This to increase the system’s electrical signal output when usingGOx as oxidising agent. Regrettably, due to lack of AG enzyme, these runs do notprovide any conclusive data, and so further investigations of systems including thisenzyme are needed. Otherwise, all systems tested seem to work, and neither ofthem appear better than the others. Therefore, all of them will require furtherquantitative testing to determine which one is best to implement in the final designof the enzyme system to be applied onto the SPE.
|
2 |
Amperometric biosensor based on Prussian Blue nanoparticle-modified screen-printed electrode for estimation of glucose-6-phosphateBanerjeea, Suchanda, Sarkara, Priyabrata, Turner, Anthony January 2013 (has links)
Glucose-6-phosphate (G6P) plays an important role in carbohydrate metabolism of all living organisms. Compared to the conventional analytical methods available for estimation of G6P, the biosensors having relative simplicity, specificity, low-cost and fast response time are a promising alternative. We have reported a G6P biosensor based on screen-printed electrode utilizing Prussian Blue (PB) nanoparticles and enzymes, glucose-6-phosphate dehydrogenase and glutathione reductase. The PB nanoparticles acted as a mediator and thereby enhanced the rate of electron transfer in a bi-enzymatic reaction. The Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy study confirmed the formation of PB, whereas, the atomic forced microscopy revealed that PB nanoparticles were about 25-30 nm in diameter. Various optimization studies, such as pH, enzyme and cofactor loading, etc. were conducted to obtain maximum amperometric responses for G6P measurement. The developed G6P biosensor showed a broad linear response in the range of 0.01-1.25 mM with a detection limit of 2.3 mM and sensitivity of 63.3 mA/mM at a signal-to-noise ratio of 3 within 15 s at an applied working potential of -100 mV. The proposed G6P biosensor also exhibited good stability, excellent anti-interference ability and worked well for serum samples.
|
3 |
Development of miniaturized electro-analytical approach for dopamine and catechol determination in the presence of ascorbic acidRashid, Mamun-Ur January 2013 (has links)
We have investigated electropolymerisation for fabrication of a chemically modified working electrode for the determination of dopamine and catechol neurotransmitters in the presence of ascorbic acid. A variety of film compositions were investigated that would allow discrimination of the neurotransmitters through a combination of electrostatic barrier and the film porosity. The films investigated were based on different compositions of () poly-o-toluidine-co-aniline (POT-co-PA), () poly-o-toluidine-co-o-anisidine (POT-co-POA) and () polyacriflavine (PAF). The POT-co-PA and POT-co-POA gave the most promising result although the POT-co-PA was preferred because of higher current enhancement and better separation of dopamine and catechol neurotransmitters in the presence of ascorbic acid. The uses of electropolymerisation make the investigated films attractive candidates for the fabrication of a chemically modified microelectrode with application in capillary electrophoresis separation with electrochemical detection. The active area of nano particle (Au, Pt and Ag) screen printed electrodes was determined using cyclic voltammogram with ferro/ferricyanide couple. The active surface of the nano particle coated electrode was found surprisingly to be 5% - 65% lower than that geometrically calculated surface area for the electrode. This is ascribed to the limitation of the screen printing approach that was used. A low cost high replication approach that would allow development of a capillary electrophoresis microfluidic chip with electrochemical detection (CE-ECD) on a polymer substrate was investigated. A fluidic top layer was fabricated using hot embossing and an electrode bottom layer by metal patterning on a polymer substrate using metallisation and photolithography.
|
4 |
Desenvolvimento de biossensor baseado em tirosinase para determinação de adenosinaMedeiros, Natália Goedtel January 2017 (has links)
Neste trabalho relata-se pela primeira vez a determinação de adenosina por um biossensor baseado em tirosinase. O biossensor foi desenvolvido mediante a modificação de um eletrodo de carbono impresso (SPE) com nanopartículas de ouro (AuNPs), tirosinase (Tyr) e Nafion, denominado biossensor Nafion/Tyr/AuNPs/SPE. As AuNPs sintetizadas possuem diâmetro médio de 15,0 ± 1,1 nm e sua função é melhorar a via de condução de elétrons entre a enzima e o eletrodo. Utilizou-se o aprisionamento com filme Nafion® para evitar a lixiviação enzimática da superfície do eletrodo. A tirosinase imobilizada apresentou boa atividade frente ao substrato catecol. Verificou-se que a adenosina atua como um inibidor do tipo não-competitivo. O biossensor é estável durante pelo menos 45 dias. Além disso, foi realizada a eletro-oxidação da adenosina para sua determinação. O biossensor apresenta sensibilidade superior em comparação com SPE, AuNPs/SPE e Nafion/AuNPs/SPE. As curvas de calibração revelaram duas faixas lineares para as concentrações de adenosina, de 1,0 × 10-5 mol L-1 até 5,0 × 10-5 mol L-1 e entre 6,0 × 10-5 mol L-1 e 1,2 × 10-4 mol L -1. O limite de detecção (3 × (desvio padrão + média dos brancos)/coeficiente angular da curva) foi de 7,0 × 10-7 mol L-1. / In this work we report for the first time the determination of adenosine by a biosensor based on tyrosinase. The biosensor was developed by modifying a screen-printed carbon electrode (SPE) with gold nanoparticles (AuNPs), tyrosinase (Tyr) and Nafion, denoted as Nafion/Tyr/AuNPs/SPE biosensor. The synthesized AuNPs have a mean diameter of 15.0 ± 1.1 nm and their function is to improve the electron conduction pathway between the enzyme and the electrode. The entrapment with Nafion® film was selected to prevent the enzyme lixiviation from the electrode surface. Immobilized tyrosinase showed good activity with the catechol substrate. It was found that adenosine acts as a non-competitive type inhibitor. The biosensor is stable for at least 45 days. In addition, the electro-oxidation of adenosine was performed for its determination. The biosensor has superior sensitivity compared to SPE, AuNPs/SPE and Nafion/AuNPs/SPE. Calibration curves revealed two linear ranges for adenosine concentrations of 1,010-5 mol L-1 up to 5,010-5 mol L-1 and from 6,010-5 mol L-1 to 1,210-4 mol L-1. The detection limit (3 × (standard deviation + mean of blanks)/slope of the curve) was 7,010-7 mol L-1.
|
5 |
Desenvolvimento de biossensor baseado em tirosinase para determinação de adenosinaMedeiros, Natália Goedtel January 2017 (has links)
Neste trabalho relata-se pela primeira vez a determinação de adenosina por um biossensor baseado em tirosinase. O biossensor foi desenvolvido mediante a modificação de um eletrodo de carbono impresso (SPE) com nanopartículas de ouro (AuNPs), tirosinase (Tyr) e Nafion, denominado biossensor Nafion/Tyr/AuNPs/SPE. As AuNPs sintetizadas possuem diâmetro médio de 15,0 ± 1,1 nm e sua função é melhorar a via de condução de elétrons entre a enzima e o eletrodo. Utilizou-se o aprisionamento com filme Nafion® para evitar a lixiviação enzimática da superfície do eletrodo. A tirosinase imobilizada apresentou boa atividade frente ao substrato catecol. Verificou-se que a adenosina atua como um inibidor do tipo não-competitivo. O biossensor é estável durante pelo menos 45 dias. Além disso, foi realizada a eletro-oxidação da adenosina para sua determinação. O biossensor apresenta sensibilidade superior em comparação com SPE, AuNPs/SPE e Nafion/AuNPs/SPE. As curvas de calibração revelaram duas faixas lineares para as concentrações de adenosina, de 1,0 × 10-5 mol L-1 até 5,0 × 10-5 mol L-1 e entre 6,0 × 10-5 mol L-1 e 1,2 × 10-4 mol L -1. O limite de detecção (3 × (desvio padrão + média dos brancos)/coeficiente angular da curva) foi de 7,0 × 10-7 mol L-1. / In this work we report for the first time the determination of adenosine by a biosensor based on tyrosinase. The biosensor was developed by modifying a screen-printed carbon electrode (SPE) with gold nanoparticles (AuNPs), tyrosinase (Tyr) and Nafion, denoted as Nafion/Tyr/AuNPs/SPE biosensor. The synthesized AuNPs have a mean diameter of 15.0 ± 1.1 nm and their function is to improve the electron conduction pathway between the enzyme and the electrode. The entrapment with Nafion® film was selected to prevent the enzyme lixiviation from the electrode surface. Immobilized tyrosinase showed good activity with the catechol substrate. It was found that adenosine acts as a non-competitive type inhibitor. The biosensor is stable for at least 45 days. In addition, the electro-oxidation of adenosine was performed for its determination. The biosensor has superior sensitivity compared to SPE, AuNPs/SPE and Nafion/AuNPs/SPE. Calibration curves revealed two linear ranges for adenosine concentrations of 1,010-5 mol L-1 up to 5,010-5 mol L-1 and from 6,010-5 mol L-1 to 1,210-4 mol L-1. The detection limit (3 × (standard deviation + mean of blanks)/slope of the curve) was 7,010-7 mol L-1.
|
6 |
Desenvolvimento de biossensor baseado em tirosinase para determinação de adenosinaMedeiros, Natália Goedtel January 2017 (has links)
Neste trabalho relata-se pela primeira vez a determinação de adenosina por um biossensor baseado em tirosinase. O biossensor foi desenvolvido mediante a modificação de um eletrodo de carbono impresso (SPE) com nanopartículas de ouro (AuNPs), tirosinase (Tyr) e Nafion, denominado biossensor Nafion/Tyr/AuNPs/SPE. As AuNPs sintetizadas possuem diâmetro médio de 15,0 ± 1,1 nm e sua função é melhorar a via de condução de elétrons entre a enzima e o eletrodo. Utilizou-se o aprisionamento com filme Nafion® para evitar a lixiviação enzimática da superfície do eletrodo. A tirosinase imobilizada apresentou boa atividade frente ao substrato catecol. Verificou-se que a adenosina atua como um inibidor do tipo não-competitivo. O biossensor é estável durante pelo menos 45 dias. Além disso, foi realizada a eletro-oxidação da adenosina para sua determinação. O biossensor apresenta sensibilidade superior em comparação com SPE, AuNPs/SPE e Nafion/AuNPs/SPE. As curvas de calibração revelaram duas faixas lineares para as concentrações de adenosina, de 1,0 × 10-5 mol L-1 até 5,0 × 10-5 mol L-1 e entre 6,0 × 10-5 mol L-1 e 1,2 × 10-4 mol L -1. O limite de detecção (3 × (desvio padrão + média dos brancos)/coeficiente angular da curva) foi de 7,0 × 10-7 mol L-1. / In this work we report for the first time the determination of adenosine by a biosensor based on tyrosinase. The biosensor was developed by modifying a screen-printed carbon electrode (SPE) with gold nanoparticles (AuNPs), tyrosinase (Tyr) and Nafion, denoted as Nafion/Tyr/AuNPs/SPE biosensor. The synthesized AuNPs have a mean diameter of 15.0 ± 1.1 nm and their function is to improve the electron conduction pathway between the enzyme and the electrode. The entrapment with Nafion® film was selected to prevent the enzyme lixiviation from the electrode surface. Immobilized tyrosinase showed good activity with the catechol substrate. It was found that adenosine acts as a non-competitive type inhibitor. The biosensor is stable for at least 45 days. In addition, the electro-oxidation of adenosine was performed for its determination. The biosensor has superior sensitivity compared to SPE, AuNPs/SPE and Nafion/AuNPs/SPE. Calibration curves revealed two linear ranges for adenosine concentrations of 1,010-5 mol L-1 up to 5,010-5 mol L-1 and from 6,010-5 mol L-1 to 1,210-4 mol L-1. The detection limit (3 × (standard deviation + mean of blanks)/slope of the curve) was 7,010-7 mol L-1.
|
7 |
Screen-Printed Soft-Nitrided Carbon Electrodes for Detection of Hydrogen PeroxideOgbu, Chidiebere I., Feng, Xu, Dada, Samson N., Bishop, Gregory W. 01 September 2019 (has links)
Nitrogen-doped carbon materials have garnered much interest due to their electrocatalytic activity towards important reactions such as the reduction of hydrogen peroxide. N-doped carbon materials are typically prepared and deposited on solid conductive supports, which can sometimes involve time-consuming, complex, and/or costly procedures. Here, nitrogen-doped screen-printed carbon electrodes (N-SPCEs) were fabricated directly from a lab-formulated ink composed of graphite that was modified with surface nitrogen groups by a simple soft nitriding technique. N-SPCEs prepared from inexpensive starting materials (graphite powder and urea) demonstrated good electrocatalytic activity towards hydrogen peroxide reduction. Amperometric detection of H2O2 using N-SPCEs with an applied potential of −0.4 V (vs. Ag/AgCl) exhibited good reproducibility and stability as well as a reasonable limit of detection (2.5 µM) and wide linear range (0.020 to 5.3 mM).
|
8 |
Nitrogen Doping of Electrochemically Activate Carbon Screen-Printed ElectrodesGalloway, Ethan 01 May 2022 (has links)
Screen printed electrodes (SPEs), which are prepared by patterning conductive inks or pastes onto an insulating support (e.g., plastic film), are widely employed as sensing and biosensing platforms due to their ease of fabrication and relatively low cost. This is especially applicable to electrodes of this nature prepared with carbon-based inks (SPCEs). To date, the most successful and significant commercial application of SPEs has been as test strips for glucose meters. Despite the maturity of this technology, SPE research remains very active as improvements in sensitivity and selectivity, which often involve modifying the electrode surface, hold the key to advancing their utility in routine applications and extending their benefits to other target analytes. Recent studies in the Bishop research group have demonstrated that nitrogen-doped SPCEs (N-SPCEs) exhibit enhanced electrochemical response towards hydrogen peroxide (H2O2), a product of oxidase enzyme (e.g., glucose oxidase, lactate oxidase, etc.) reactions and a common target in biosensing strategies. The presence of nitrogen heteroatoms on the carbon surface facilitates breakage of oxygen-oxygen bonds, a key step in reduction of H2O2. Since previous studies showed only modest incorporation of nitrogen species on SPCEs prepared from commercial ink, these studies aim to investigate the possibility of enhancing N-doping by performing a simple pre-treatment strategy that reportedly increases surface oxygen content of SPCEs prior to N-doping. Since surface oxygen sites have been previously reported to be preferentially modified with nitrogen during N doping strategies, this seems like a promising technique for improving sensitivity of N-SPCEs for H2O2 reduction. To quantify the actuality of these claims, experimental groups were fabricated having undergone no enhancement, pretreatment enhancement only, nitrogen-doping enhancement only, and a combination of the pretreatment and nitrogen-doping enhancements. Here the electrochemical behaviors of pretreated SPCEs, N-SPCEs, and pretreated N-SPCEs for the detection of H2O2 by completing comparative cyclic voltammetry (CV) experiments with and without the presence of H2O2 and with it present in varying concentrations is compared. It is projected that, if successful, the fabricated electrodes that have undergone both the pretreatment protocol and the nitrogen-doping process will have an increased sensitivity and detection limit towards H2O2.
|
9 |
Desenvolvimento de um biossensor mimético descartável para pesticidas organofosforados e carbamatos para o controle de qualidade de águas de abastecimento / Development of a disposable mimetic biosensor for organophosphorus and carbamate pesticides aiming quality control of water supplyLívia Flório Sgobbi 26 February 2016 (has links)
A enzima acetilcolinesterase (AChE) tem sido amplamente aplicada no desenvolvimento de biossensores para detecção de pesticidas. No entanto, a aplicação de tais dispositivos é limitada devido à falta de robustez, que está associada com a baixa estabilidade enzimática, além de seu alto custo. Uma alternativa às enzimas é a utilização de moléculas sintéticas que mimetizem o comportamento enzimático, com menor custo e maior estabilidade; tais moléculas são denominadas moléculas biomiméticas. Neste trabalho são apresentados três potenciais catalisadores: o ácido [4-(1E)etanohidrazonoil]benzóico, o iodeto de pralidoxima (2-PAM) e o polímero polihidroxamicalcanoato (PHA); com grupos funcionais alfa nucleófilos hidrazona, oxima e ácido hidroxâmico, respectivamente. Tais moléculas foram avaliadas baseando-se em dois critérios para classificação de biomiméticos da AChE: 1) catálise da hidrólise do substrato acetiltiocolina (ATCh) e 2) interação com pesticida organofosforado. O método espectrofotométrico de Ellman revelou que o polímero PHA foi a molécula mais eficiente, uma vez que a constante de velocidade de segunda ordem obtida foi de 13867 mol-1 L s-1, 5 vezes superior a da 2-PAM e 232 vezes a da hidrazona. Posteriormente, todas as moléculas foram avaliadas por método espectrofotométrico em relação à interação com o organofosforado paraoxon. Apenas o PHA apresentou interação nas condições estudadas. Cálculos teóricos mostraram como ocorre a aproximação entre o PHA e ATCh, e com o paraoxon. Diante dos resultados obtidos, o PHA foi a molécula biomimética escolhida para aplicação no sensor eletroquímico para detecção de organofosforados. Primeiramente, o PHA foi imobilizado na superfície de um eletrodo impresso descartável a partir da formação de uma blenda com o polímero polietileno glicol metil éter, evitando sua solubilização. A oxidação da tiocolina formada a partir da catálise do ATCh realizada pelo PHA imobilizado foi verificada em 0,46 V vs Ag/AgCl, por voltametria de pulso diferencial. A equação obtida a partir da curva de calibração referente ao intervalo de concentração de paraoxon de 1,0 a 10,0 µmol L-1 foi I(%) = [4,8x106 C (mol L-1) + 0,8169]×100 (R2 = 0,99969), com limite de detecção de 3,63x10-7 mol L-1. Amostras de água de abastecimento foram analisadas, com concentrações adicionadas de paraoxon de 3,0; 6,0 e 8,0 µmol L-1, com recuperação de 115%; 106% e 94,5%, respectivamente. Os resultados apresentados mostraram que foi possível desenvolver um sensor eletroquímico biomimético para detecção de pesticida paraoxon. / Acetylcholinesterase enzyme (AChE) has been widely applied in biosensor development for pesticide detection. However, the application of those biosensors is limited due to their lack of robustness associated with low enzymatic stability and AChE high cost. An alternative to enzymes, it is the use of synthetic molecules which mimic enzymatic behavior, besides its low cost and superior stability, those are classified as biomimetic molecules. In this work is presented three potential catalysts: [4-(1E)ethanehydrazonoyl]benzoic acid, pralidoxime iodide (2-PAM), and polyhydroxamicalkalnoate polymer (PHA) with alpha nucleophile functional groups, such as hydrazone, oxime, and hydroxamic acid, respectively. The aforementioned molecules were evaluated based on two criteria for classification as AChE biomimetic: 1) catalysis of acetylthiocholine substrate (ATCh) hydrolysis and 2) interaction with organophosphorus pesticide. Spectrophotometrical Ellman´s method revealed that PHA polymer was the most efficient one, since its second order rate constant was 13867 mol-1 L s-1, which was 5 times superior than 2-PAM one and 232 times higher than hydrazone. Then, each molecule was analyzed through spectrophotometric method to verify the interaction with paraoxon organophosphorus pesticide. Only the PHA exhibited such interaction in the studied conditions. Theoretical calculations showed how the approach between PHA and ATCh, and also with paraoxon occurred. Regarding the obtained results, PHA was the chosen biomimetic molecule to be applied in the electrochemical sensor for organophosphorus detection. First of all, PHA was immobilized on the surface of disposable screen printed electrode through blend formation with polyethylene glycol methyl ether (mpEG), avoiding PHA dissolution. The oxidation of thiocholine generated towards ATCh catalysis performed by immobilized PHA was verified at 0.46 V vs Ag/AgCl by differential pulse voltammetry. The linear equation obtained through calibration curve for paraoxon concentration range of 1.0 to 10.0 µmol L-1 was I(%) = [4.8x106 C (mol L-1) + 0.8169]×100 (R2 = 0.99969), with limit of detection of 3.63x10-7 mol L-1. Water supply samples were analyzed considering the added paraoxon concentrations of 3.0; 6.0 e 8.0 µmol L-1, recovering 115%; 106% and 94.5%, respectively. The presented results showed that a biomimetic electrochemical sensor was successfully developed for detection of paraoxon organophosphorus pesticide.
|
10 |
Desenvolvimento de um biossensor mimético descartável para pesticidas organofosforados e carbamatos para o controle de qualidade de águas de abastecimento / Development of a disposable mimetic biosensor for organophosphorus and carbamate pesticides aiming quality control of water supplySgobbi, Lívia Flório 26 February 2016 (has links)
A enzima acetilcolinesterase (AChE) tem sido amplamente aplicada no desenvolvimento de biossensores para detecção de pesticidas. No entanto, a aplicação de tais dispositivos é limitada devido à falta de robustez, que está associada com a baixa estabilidade enzimática, além de seu alto custo. Uma alternativa às enzimas é a utilização de moléculas sintéticas que mimetizem o comportamento enzimático, com menor custo e maior estabilidade; tais moléculas são denominadas moléculas biomiméticas. Neste trabalho são apresentados três potenciais catalisadores: o ácido [4-(1E)etanohidrazonoil]benzóico, o iodeto de pralidoxima (2-PAM) e o polímero polihidroxamicalcanoato (PHA); com grupos funcionais alfa nucleófilos hidrazona, oxima e ácido hidroxâmico, respectivamente. Tais moléculas foram avaliadas baseando-se em dois critérios para classificação de biomiméticos da AChE: 1) catálise da hidrólise do substrato acetiltiocolina (ATCh) e 2) interação com pesticida organofosforado. O método espectrofotométrico de Ellman revelou que o polímero PHA foi a molécula mais eficiente, uma vez que a constante de velocidade de segunda ordem obtida foi de 13867 mol-1 L s-1, 5 vezes superior a da 2-PAM e 232 vezes a da hidrazona. Posteriormente, todas as moléculas foram avaliadas por método espectrofotométrico em relação à interação com o organofosforado paraoxon. Apenas o PHA apresentou interação nas condições estudadas. Cálculos teóricos mostraram como ocorre a aproximação entre o PHA e ATCh, e com o paraoxon. Diante dos resultados obtidos, o PHA foi a molécula biomimética escolhida para aplicação no sensor eletroquímico para detecção de organofosforados. Primeiramente, o PHA foi imobilizado na superfície de um eletrodo impresso descartável a partir da formação de uma blenda com o polímero polietileno glicol metil éter, evitando sua solubilização. A oxidação da tiocolina formada a partir da catálise do ATCh realizada pelo PHA imobilizado foi verificada em 0,46 V vs Ag/AgCl, por voltametria de pulso diferencial. A equação obtida a partir da curva de calibração referente ao intervalo de concentração de paraoxon de 1,0 a 10,0 µmol L-1 foi I(%) = [4,8x106 C (mol L-1) + 0,8169]×100 (R2 = 0,99969), com limite de detecção de 3,63x10-7 mol L-1. Amostras de água de abastecimento foram analisadas, com concentrações adicionadas de paraoxon de 3,0; 6,0 e 8,0 µmol L-1, com recuperação de 115%; 106% e 94,5%, respectivamente. Os resultados apresentados mostraram que foi possível desenvolver um sensor eletroquímico biomimético para detecção de pesticida paraoxon. / Acetylcholinesterase enzyme (AChE) has been widely applied in biosensor development for pesticide detection. However, the application of those biosensors is limited due to their lack of robustness associated with low enzymatic stability and AChE high cost. An alternative to enzymes, it is the use of synthetic molecules which mimic enzymatic behavior, besides its low cost and superior stability, those are classified as biomimetic molecules. In this work is presented three potential catalysts: [4-(1E)ethanehydrazonoyl]benzoic acid, pralidoxime iodide (2-PAM), and polyhydroxamicalkalnoate polymer (PHA) with alpha nucleophile functional groups, such as hydrazone, oxime, and hydroxamic acid, respectively. The aforementioned molecules were evaluated based on two criteria for classification as AChE biomimetic: 1) catalysis of acetylthiocholine substrate (ATCh) hydrolysis and 2) interaction with organophosphorus pesticide. Spectrophotometrical Ellman´s method revealed that PHA polymer was the most efficient one, since its second order rate constant was 13867 mol-1 L s-1, which was 5 times superior than 2-PAM one and 232 times higher than hydrazone. Then, each molecule was analyzed through spectrophotometric method to verify the interaction with paraoxon organophosphorus pesticide. Only the PHA exhibited such interaction in the studied conditions. Theoretical calculations showed how the approach between PHA and ATCh, and also with paraoxon occurred. Regarding the obtained results, PHA was the chosen biomimetic molecule to be applied in the electrochemical sensor for organophosphorus detection. First of all, PHA was immobilized on the surface of disposable screen printed electrode through blend formation with polyethylene glycol methyl ether (mpEG), avoiding PHA dissolution. The oxidation of thiocholine generated towards ATCh catalysis performed by immobilized PHA was verified at 0.46 V vs Ag/AgCl by differential pulse voltammetry. The linear equation obtained through calibration curve for paraoxon concentration range of 1.0 to 10.0 µmol L-1 was I(%) = [4.8x106 C (mol L-1) + 0.8169]×100 (R2 = 0.99969), with limit of detection of 3.63x10-7 mol L-1. Water supply samples were analyzed considering the added paraoxon concentrations of 3.0; 6.0 e 8.0 µmol L-1, recovering 115%; 106% and 94.5%, respectively. The presented results showed that a biomimetic electrochemical sensor was successfully developed for detection of paraoxon organophosphorus pesticide.
|
Page generated in 0.0827 seconds