• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 28
  • 15
  • 11
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 130
  • 130
  • 89
  • 36
  • 34
  • 33
  • 24
  • 24
  • 24
  • 23
  • 21
  • 19
  • 17
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Observation of Natural and Artificial Features on the Sea Surface from Synthetic Aperture Radar Satellite Imagery with In-situ Measurements

Maingot, Christopher 22 November 2011 (has links)
Synthetic aperture radar imaging is an effective tool for imaging the sea surface because of its response to changes in sea surface roughness. This allows for the remote sensing of features on the sea surface, which modulate se surface roughness. In this work, 18 synthetic aperture radar images were collected from the TerraSAR-X and RADARSAT-2 satellites in the Port Everglades, Florida area. In-situ measurements were collected in conjunction with the satellite images in order to provide more information on the features visible in the imagery, and aid in identification of the origin of the features. Information on ships in the area of the satellite image footprints was collected using an automatic information system. Weather conditions were recorded by a meteorological station and a National Oceanic and Atmospheric Administration weather radar station. Waves and currents in the observational area were recorded with acoustic Doppler current profilers and wave gauges. Sonar systems and conductivity, depth, and salinity profilers were used to identify stratification in the water column. Surfactant release experiments were also conducted to explore the affects of surface active materials. Results of the experiment show the manifestation of atmospheric effects, oceanic fronts and eddies, wind shadowing, natural and artificial slicks, and ships and ship wakes on the synthetic aperture radar imagery. Atmospheric conditions were found to play a significant role in the visibility of features on the sea surface, and sometimes masked the appearance of features on the ocean surface. Overall the most reliable feature capable of being imaged on the sea surface by the synthetic aperture radar satellites was the signatures of ships and their wakes.
42

Determination of Sea Turtle Nesting Behavior using Thermograph Data Analysis in Broward County, Florida

Cook, Brettany L. 12 May 2009 (has links)
The current accepted methods for assessing the effect of water temperatures on sea turtle nesting, utilizes sea surface temperatures (SST). Since Loggerhead sea turtles spend the majority of their time near the ocean floor, often below a thermocline, bottom temperature analysis should be a better estimate of actual temperature experienced by the sea turtles, therefore, correlating better to nesting events. Thermograph data sensors were placed along three reef tracts that run parallel to Broward County, Florida’s coastline, to collect bottom seawater temperatures from the year 2004 through 2006. Detrended average daily bottom temperatures were compared to detrended Loggerhead sea turtle nest counts collected by daily beach monitoring throughout the county. The comparisons confirmed that during the years 2004 and 2006, up to 29.6% of the fluctuations in sea turtle nesting can be associated to the short-term changes in bottom water temperature. r2-values of 0.2963 and 0.2948 were determined along the Broward County coastline, with p-values<0.001. No significant correlations were found in the year 2005 when bottom water temperature variations were smaller than in the other years. This evaluation shows that Loggerhead sea turtle nesting counts can be highly correlated to bottom seawater temperatures, in Broward County, Florida. Better understanding of a location’s temperature fluctuations can lead to a better management and conservation plan for the associated species and habitat.
43

DNA Analysis of Surfactant-Associated Bacteria in a Natural Sea Slick in the Gulf of Mexico Observed by TerraSAR-X

Howe, Kathryn 31 July 2017 (has links)
Under low wind speed conditions, surfactants accumulate at the air-sea interface, dampen short-gravity capillary (Bragg) waves, and form natural sea slicks that are detectable visually and in synthetic aperture radar (SAR) imagery. Marine organisms, such as phytoplankton, zooplankton, seaweed, and bacteria, produce and degrade surfactants during various life processes. This study coordinates in situ sampling with TerraSAR-X satellite overpasses in order to help guide microbiological analysis of the sea surface microlayer (SML) and associated subsurface water (SSW). Samples were collected in the Gulf of Mexico during a research cruise (LASER) in February 2016 to determine abundance of surfactant associated bacteria in the sea surface microlayer and subsurface water column. By using real time polymerase chain reaction (quantitative PCR, or qPCR) to target Bacillus spp. associated with surfactant production, results indicate that more surfactant-associated bacteria reside in the subsurface water in low wind speed conditions. Sequencing results suggest that Bacillus and Pseudomonas are more abundant in the SSW in low wind speed conditions. These results indicate that these bacteria reside in the SSW, presumably producing surfactants that move to the surface via physical processes, accumulate on and enrich the sea surface microlayer.
44

Mixed Layer Thermodynamics Of The Southeastern Arabian Sea Using ARMEX Observations

Parampil, Sindu Raj 11 1900 (has links) (PDF)
No description available.
45

Observed Subseasonal Variability Of Temperarture And Salinity In The Tropical Indian Ocean

Parampil, Sindu Raj 04 1900 (has links) (PDF)
Subseasonal variability of tropical Indian Ocean sea surface temperature is thought to influence the active-break cycle of the Asian monsoon. There are several open questions related to the role of surface fluxes, large-scale ocean circulation and subsurface ocean processes in the subseasonal variability of upper ocean temperature. We present a unified study of the subseasonal (2-90 day) variability of surface heat flux and upper ocean temperature and salinity throughout the tropical Indian Ocean in all seasons. We focus on the relation between surface fluxes and ocean response using a new satellitebased daily heat flux. The role of ocean processes (advection, entrainment and mixing) in determining SST variability is diagnosed from the daily satellite SST. Before the onset of the summer monsoon, sea surface temperature (SST) of the north Indian Ocean warms to 30-32oC. Climatological mean mixed layer depth in spring (March-May) is 10-20 m, and net surface heat flux (Qnet) is 80-100 Wm 2 into the ocean. It has been suggested that observed spring SST warming is small mainly due to (a) penetrative flux of solar radiation through the base of the mixed layer (Qpen), (b) advective cooling by upper ocean currents and (c) entrainment of sub-mixed layer cool water. We estimate the role of the first two processes in SST evolution from a two-week ARMEX experiment in April-May 2005 in the the southeastern Arabian Sea. The upper ocean is stratified by salinity and temperature, and mixed layer depth is shallow (6 to 12 m). Current speed at 2 m depth is high even under light winds. Currents within the mixed layer are quite distinct from those at 25 m. On subseasonal scales, SST warming is followed by rapid cooling. The cooling occurs although the ocean gains heat at the surface - Qnet is about 105 Wm 2 in the warming phase, and 25 Wm 2 in the cooling phase; penetrative loss Qpen, is 80 Wm 2 and 70 Wm 2. In the warming phase, SST rises mainly due to heat absorbed within the mixed layer, i.e. Qnet minus Qpen; Qpen, reduces the rate of SST warming by a factor of three. In the second phase, SST cools rapidly because (a) Qpen, is larger than Qnet, and (b) advective cooling is _85 Wm 2. A calculation using time-averaged heat fluxes and mixed layer depth suggests that diurnal variability of fluxes and upper ocean stratification tends to warm SST on subseasonal time scale. Buoy and satellite data suggest that a typical premonsoon intraseasonal SST cooling event occurs under clear skies and weak winds, when the ocean is gaining heat. In this respect, premonsoon SST cooling in the north Indian ocean is different from that due to MJO or monsoon ISO. As a follow-up to ARMEX, we use a short dataset from a field campaign in the premonsoon north Bay of Bengal to study diurnal variability of SST. In addition to the standard meteorological and hydrographic parameters measured from shipborne instruments and buoy sensors, we obtained a two-hourly record of subsurface sunlight profiles. Heat fluxes are seen to drive the SST warming during the day while both advection and entrainment/mixing are important during the night. The simple heat balance based on heat flux shows that it drives the diurnal cycle of SST, though ocean processes contribute towards night time cooling; this has been confirmed using the Price-Weller-Pinkel mixing model forced by heat flux and wind stress. A similar analysis for mixed layer salinity revealed that the salt balance in the region is dominated by advection rather than freshwater flux or entrainment/mixing. Buoy and satellite data show pronounced subseasonal oscillations of sea surface temperature (SST) in the summertime north Indian Ocean. The SST oscillations are forced mainly by surface heat flux associated with the active-break cycle of the south Asian summer monsoon. The input of freshwater (FW) from summer rain and rivers to the Bay is large, but not much is known about subseasonal salinity variability. We use 2002-2007 observations from Argo floats with 5-day repeat cycle to study the subseasonal response of temperature and salinity to surface heat and freshwater flux in the central Bay of Bengal and central Arabian Sea. Estimates of surface heat and freshwater flux are based on daily satellite data sampled along the float trajectory. We find that intraseasonal variability (ISV) of mixed layer temperature is mainly a response to net surface heat flux minus penetrative radiation during the summer monsoon season. In winter and spring, however, temperature variability appears to be mainly due to ocean processes rather than local heat flux. Variability of mixed layer freshwater content is generally independent of local surface flux (precipitation minus evaporation) in all seasons. There are occasions when intense monsoon rainfall leads to local freshening, but these are rare. The large subseasonal fluctuations observed in FW appear to be due to advection, suggesting that freshwater from rivers and rain moves in eddies or filaments. We have developed a new daily satellite-based heat flux dataset for the tropical Indian Ocean (30oE 120oE; 30oS 30oN); satellite data include surface air temperature and relative humidity from the Atmospheric Infrared Sounder (AIRS). On the seasonal scale (> 90 days) the flux compares reasonably well with climatologies and other daily data. On the subseasonal scale, our flux product has realistic behaviour relative to buoy data at validation sites. An important result is that ocean processes (advection, entrainment/detrainment, mixing at the base of the mixed layer) cool the tropical Indian Ocean SST by 8oC over the year. The largest contribution of ocean processes (_20oC SST cooling over the year) is in the western equatorial Indian Ocean. Ocean processes generally cool the upper ocean in all seasons and all regions, except in boreal winter, when they warm the north Indian Ocean. This is likely due to entrainment of warm sub-mixed layer water in regions of inversions. On subseasonal (2-90 days) scales, the contribution of air temperature and humidity to latent heat flux is roughly equal to the contribution from wind speed variability: Another interesting finding is that the contribution of air temperature and humidity increases away from the equator. One of the most important contributions of this thesis is the demonstration that tropical Indian Ocean SST has a coherent response to intraseasonal changes in heat flux associated with organised convection in the summer hemisphere. SST responds to flux in (i) the northeast Indian Ocean during May-October and (ii) the 15oS-5oN region during November-April. In the winter hemisphere and in regions with no organised convection, it is ocean processes and not fluxes which drive the subseasonal changes in SST. This result suggests that SST ISV feeds back to organise and sustain organised convection in the tropical atmosphere.
46

How sea surface temperature gradients contribute to tropical cyclone weakening in the eastern north Pacific

Holliday, Brian Matthew 03 May 2019 (has links)
Decades of research have fostered a greater understanding of the environmental controls that drive tropical cyclone (TC) intensity change, yet the community has achieved only small improvements in intensity forecasting. Numerous environmental factors impact TC intensity, such as vertical wind shear and sea surface temperatures (SSTs), but little research has focused on establishing if SST change under the TC, or SST gradients, influence these intensity changes. This study investigated three methods to compute SST gradients. The first method calculated the SST change within fixed distances along the track. In the second and third methods, the SST was calculated over the distance traversed by the TC in two separate six-hour periods. By examining 455 24-hour weakening episodes in the eastern North Pacific, this study revealed that the first SST gradient method explained the highest 24-hour weakening variance for TCs located within SSTs at or lower than 26.5 degrees C.
47

Predictive Modeling of Spatio-Temporal Datasets in High Dimensions

Chen, Linchao 27 May 2015 (has links)
No description available.
48

Observação da Variação Espectral e Posicional da Frente Brasil-Malvinas por Sensoriamento Remoto / Observation of the Brazil-Malvinas front spectral variability and positional variation by remote sensing

Ferreira, Márcio Borges 19 November 2010 (has links)
A Confluência Brasil-Malvinas (CBM) é formada pelo encontro da Corrente do Brasil (CB) com a Corrente das Malvinas (CM) no Atlântico Sul. Esta é uma das áreas mais energéticas do oceano global e é demarcada por um intenso gradiente meridional de temperatura. Imagens de satélites e observações in situ mostram a presença de meandros e vórtices, tanto ciclônicos como anticiclônicos, na região da CBM. Com o conhecimento de campos de anomalia da altura da superfície do mar (AASM) e campos de temperatura da superfície do mar (TSM) para a região da Frente Brasil-Malvinas (FBM) é possível se estimar a variação da energia associada às ondas de Rossby anuais e bianuais existentes em seu entorno e detectar a posição da frente termal existente nesta região. Nesse contexto, foi realizado o estudo do deslocamento meridional da FBM numa escala de tempo interanual, da variação do espectro de ondas de Rossby na CBM e da variabilidade associada ao campo médio de velocidades geostróficas absolutas. A comparação do espectro de ondas de Rossby na CBM para o período de 2001-2008 apresentou aumento da energia associada aos períodos anual e bianual em relação aos valores obtidos da análise do período de 1993-2000. Essa alteração do espectro não teve relação com a alteração média da frente termal detectada porém, houve aumento significativo da variabilidade meridional da posição da frente média, possivelmente devido a um aumento do fluxo da CB. Maior variabilidade também foi observada nos mapas de velocidade geostrófica para o mesmo período de 2001-2008. Estes mapas exibiram ainda um possível posicionamento mais austral da CB, corroborando o aumento da variabilidade oriundo da maior instabilidade gerada por ondas planetárias na região da CBM. / The Brazil-Malvinas Confluence (BMC) is formed by the encounter of the Brazil Current (BC) with the Malvinas Current (MC) at the South Atlantic ocean. This is one of the most energetic regions of the world oceans and it is characterized by intense meridional sea surface temperature gradients. Satellite data and in situ observations often reveal the presence of cyclonic and anticyclonic meanders and vortices at the BMC region. The sea surface height anomaly (SSHA) and the sea surface temperature (SST) fields of the Brazil-Malvinas Frontal (BMF) region can be used to determine the energy variations associated with the annual and bi-annual Rossby waves that occur at its surroundings and to detect the position of the thermal front. Our study involved the determination of the BMF meridional displacement on an interannual scale, the spectral variations of the Rossby wave field at the BMC region, and the variability associated to the mean absolute geostrophic velocities. The Rossby wave spectra at the BMC for 2001-2008 show an increase of the energy associated with both the annual and bi--annual periods relative to the 1993-2000 interval. These spectral changes are not directly related to the mean changes in the thermal front region, however we detected a significant meridional variability of the mean position of the front most probably due to an increase in the BC flux. Large variations were also observed in the geostrophic velocity field for the 2001-2008 period. These maps exhibited a farther south location of the BC. This corroborates the variability increase due to a greater instability introduced by the planetary waves at the BMC region.
49

Observação da Variação Espectral e Posicional da Frente Brasil-Malvinas por Sensoriamento Remoto / Observation of the Brazil-Malvinas front spectral variability and positional variation by remote sensing

Márcio Borges Ferreira 19 November 2010 (has links)
A Confluência Brasil-Malvinas (CBM) é formada pelo encontro da Corrente do Brasil (CB) com a Corrente das Malvinas (CM) no Atlântico Sul. Esta é uma das áreas mais energéticas do oceano global e é demarcada por um intenso gradiente meridional de temperatura. Imagens de satélites e observações in situ mostram a presença de meandros e vórtices, tanto ciclônicos como anticiclônicos, na região da CBM. Com o conhecimento de campos de anomalia da altura da superfície do mar (AASM) e campos de temperatura da superfície do mar (TSM) para a região da Frente Brasil-Malvinas (FBM) é possível se estimar a variação da energia associada às ondas de Rossby anuais e bianuais existentes em seu entorno e detectar a posição da frente termal existente nesta região. Nesse contexto, foi realizado o estudo do deslocamento meridional da FBM numa escala de tempo interanual, da variação do espectro de ondas de Rossby na CBM e da variabilidade associada ao campo médio de velocidades geostróficas absolutas. A comparação do espectro de ondas de Rossby na CBM para o período de 2001-2008 apresentou aumento da energia associada aos períodos anual e bianual em relação aos valores obtidos da análise do período de 1993-2000. Essa alteração do espectro não teve relação com a alteração média da frente termal detectada porém, houve aumento significativo da variabilidade meridional da posição da frente média, possivelmente devido a um aumento do fluxo da CB. Maior variabilidade também foi observada nos mapas de velocidade geostrófica para o mesmo período de 2001-2008. Estes mapas exibiram ainda um possível posicionamento mais austral da CB, corroborando o aumento da variabilidade oriundo da maior instabilidade gerada por ondas planetárias na região da CBM. / The Brazil-Malvinas Confluence (BMC) is formed by the encounter of the Brazil Current (BC) with the Malvinas Current (MC) at the South Atlantic ocean. This is one of the most energetic regions of the world oceans and it is characterized by intense meridional sea surface temperature gradients. Satellite data and in situ observations often reveal the presence of cyclonic and anticyclonic meanders and vortices at the BMC region. The sea surface height anomaly (SSHA) and the sea surface temperature (SST) fields of the Brazil-Malvinas Frontal (BMF) region can be used to determine the energy variations associated with the annual and bi-annual Rossby waves that occur at its surroundings and to detect the position of the thermal front. Our study involved the determination of the BMF meridional displacement on an interannual scale, the spectral variations of the Rossby wave field at the BMC region, and the variability associated to the mean absolute geostrophic velocities. The Rossby wave spectra at the BMC for 2001-2008 show an increase of the energy associated with both the annual and bi--annual periods relative to the 1993-2000 interval. These spectral changes are not directly related to the mean changes in the thermal front region, however we detected a significant meridional variability of the mean position of the front most probably due to an increase in the BC flux. Large variations were also observed in the geostrophic velocity field for the 2001-2008 period. These maps exhibited a farther south location of the BC. This corroborates the variability increase due to a greater instability introduced by the planetary waves at the BMC region.
50

Radiative transfer modelling for sun glint correction in marine satellite imagery

Kay, Susan Barbara January 2011 (has links)
Remote sensing is a powerful tool for studying the marine environment; however, many images are contaminated by sun glint, the specular reflection of light from the water surface. Improved radiative transfer modelling could lead to better methods for estimating and correcting sunglint. This thesis explores the effect of using detailed numerical models of the sea surface when investigating the transfer of light through the atmosphere-ocean system. New numerical realisations that model both the shape and slope of the sea surface have been created; these contrast with existing radiative transfer models, where the air-water interface has slope but not elevation. Surface realisations including features on a scale from 3 mm to 200 m were created by a Fourier synthesis method, using up to date spectra of the wind-blown sea surface. The surfaces had mean square slopes and elevation variances in line with those of observed seas, for wind speeds up to 15 m/s. Ray-tracing using the new surfaces gave estimates of reflected radiance that were similar to those made using slope statistics methods, but significantly different in 41% of cases tested. The mean difference in the reflected radiance at these points was 19%, median 7%. Elevation-based surfaces give increased sideways scattering and reduced forward scattering of light incident on the sea surface. The elevation-based models have been applied to estimate pixel-pixel variation in ocean colour imagery and to simulate scenes viewed by three types of sensor. The simulations correctly estimated the size and position of the glint zone. Simulations of two ocean colour images gave a lower peak reflectance than the original values, but higher reflectance at the edge of the glint zone. The use of the simulation to test glint correction methods has been demonstrated, as have global Monte Carlo techniques for investigating sensitivity and uncertainty in sun glint correction. This work has shown that elevation-based sea surface models can be created and tested using readily-available computer hardware. The new model can be used to simulate glint in a variety of situations, giving a tool for testing glint correction methods. It could also be used for glint correction directly, by predicting the level of sun glint in a given set of conditions.

Page generated in 0.0832 seconds