• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 24
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mesure de sections efficaces absolues vibrationnelles pour la collision d’électrons de basse énergie (1-19 eV) avec le tétrahydrofurane (THF) condensé / Measurement of absolute vibrational cross sections for low-energy electron (1-19 eV) scattering from condensed tetrahydrofuran (THF)

Lemelin, Vincent January 2016 (has links)
Résumé: Ce mémoire de maîtrise est une étude des probabilités d’interactions (sections efficaces) des électrons de basse énergie avec une molécule d’intérêt biologique. Cette molécule est le tétrahydrofurane (THF) qui est un bon modèle de la molécule constituant la colonne vertébrale de l’ADN; le désoxyribose. Étant donné la grande quantité d’électrons secondaires libérés lors du passage des radiations à travers la matière biologique et sachant que ceux-ci déposent la majorité de l’énergie, l’étude de leurs interactions avec les molécules constituant l’ADN devient rapidement d’une grande importance. Les mesures de sections efficaces sont faites à l’aide d’un spectromètre à haute résolution de pertes d’énergie de l’électron. Les spectres de pertes d’énergie de l’électron obtenus de cet appareil permettent de calculer les valeurs de sections efficaces pour chaque vibration en fonction de l’énergie incidente de l’électron. L’article présenté dans ce mémoire traite de ces mesures et des résultats. En effet, il présente et explique en détail les conditions expérimentales, il décrit la méthode de déconvolution qui est utilisée pour obtenir les valeurs de sections efficaces et il présente et discute des 4 résonances observées dans la dépendance en énergie des sections efficaces. En effet, cette étude a permis de localiser en énergie 4 résonances et celles-ci ont toutes été confirmées par des recherches expérimentales et théoriques antérieures sur le sujet des collisions électrons lents-THF. En outre, jamais ces résonances n’avaient été observées simultanément dans une même étude et jamais la résonance trouvée à basse énergie n’avait été observée avec autant d’intensité que cette présente étude. Cette étude a donc permis de raffiner notre compréhension fondamentale des processus résonants impliqués lors de collisions d’électrons secondaires avec le THF. Les valeurs de sections efficaces sont, quant à elles, très prisées par les théoriciens et sont nécessaires pour les simulations Monte Carlo pour prédire, par exemple, le nombre d’ions formées après le passage des radiations. Ces valeurs pourront justement être utilisées dans les modèles de distribution et dépôt d’énergie au niveau nanoscopique dans les milieux biologiques et ceux-ci pourront éventuellement améliorer l’efficacité des modalités radiothérapeutiques. / Abstract: This master’s thesis is a study of interactions probabilities (cross sections) of low-energy electrons with an important biomolecule. The studied molecule is tetrahydrofuran (THF) which is a good model for the DNA backbone constituent deoxyribose. Knowing the important quantity of secondary electrons generated by the radiations passage through the biological matter and knowing that these low-energy electrons are responsible for the majority of the energy deposited, the study of their interactions with DNA constituents becomes rapidly important. Cross sections measurements are performed with a high-resolution electron energy loss spectrometer. The electron energy loss spectra obtained from this spectrometer allow cross sections calculations for each vibration mode as a function of electron incident energy. The article presented in this master thesis describes in details the experimental methods, it presents energy loss spectra and it shows and discusses results obtained in this project. The energy dependence of the cross sections allows the observation of multiple resonances in many vibration modes of THF. Effectively, this study allows the energy localisation of 4 resonances, which have all been confirmed by previous experimental and theoretical studies on the electron-THF collisions. Additionally, these resonances have never been observed simultaneously in the same study and the resonance found at low incident energy has never been observed with as much intensity as this present work. This study allowed a better understanding of the fundamental processes occurring in collisions of low-energy electrons with THF. The cross sections values are highly prized by theorists and they are essential for Monte Carlo simulations. These values will be used in models for energy distribution and deposition in biological matter at nanoscopic scales, thereby they will eventually improve the efficiency of radiotherapeutic modalities.
22

Design and Simulation of a Miniature Cylindrical Mirror Auger Electron Energy Analyzer with Secondary Electron Noise Suppression

Bieber, Jay A. 17 November 2017 (has links)
In the nanoscale metrology industry, there is a need for low-cost instruments, which have the ability to probe the structrure and elemental composition of thin films. This dissertation, describes the research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source. Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL. To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included experiments to create structures in materials, which were intended to suppress SE backgound noise in the CMA. Laser Beam Machining, (LBM), of copper substrates was used to create copper pillars with very high surface areas, which were designed to supress SE’s. The LBM was performed with a Lumera SUPER RAPID‐HE model Neodymium Vanadate laser. The laser has a peak output power of 30 megawatts, has a 5x lens and a spot size of 16 μm. The laser wavelength is in the infrared at 1064 nm, a pulse width of 15 picoseconds, and pulse repetition rate up to 100 kHz. The spectrometer used in this research is intended for use when performing chemical analysis of the surface of bulk materials and thin films. It is applicable for metrology of thin films, as low as 0.4 nm in thickness, without the need to perform destructive sample thinning, which is required in Scanning Tranmission Electron Microscopy, (STEM). The spectrometer design is based on the well known and widely used coaxial cylinder capacitor design known as the Cylindrical Mirror Analyzer, (CMA). The coaxial tube arrangement of the CMA allows for placing an electron source,which is mounted in the center of the inner cylinder of the spectrometer. Simulation of the electron source with an Einzel Lens was also performed. In addtion, experiments with thin film coatings and Laser Beam Machining to supress Secondary Electron emission noise within the Auger electron spectrum were completed. Design geometry for the miniature CMA were modeled using Computer Aided Design, (CAD). Fixed Boundary Conditions, (BC), were applied and the geometry was then meshed for FEM. The electrostatic potential was then solved using the Poisson equation at each point. Having found the solution to the electrostatic potentials, electron flight simulations were performed and compared with the analytical solution. From several commercially available FEM modeling packages, COMSOL Multiphysics was chosen as the research platform for modeling of the spectrometer design. The CMA in this design was reduced in size by a factor of 4 to 5. This enabled mounting the CMA on a 2 ¾ in flange compared to the commercial PHI model 660 CMA which mounts onto a 10 in flange. Results from the Scanning Electron Microscopy measurements of the Secondary Electron emission characteristics of the LBM electron suppressor will also be presented.
23

Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields

Sydorenko, Dmytro 14 June 2006
In modern low pressure plasma discharges, the electron mean free path often exceeds the device dimensions. Under such conditions the electron velocity distribution function may significantly deviate from Maxwellian, which strongly affects the discharge properties. The description of such plasmas has to be kinetic and often requires the use of numerical methods. This thesis presents the study of kinetic effects in inductively coupled plasmas and Hall thrusters carried out by means of particle-in-cell simulations. The important result and the essential part of the research is the development of particle-in-cell codes. <p>An advective electromagnetic 1d3v particle-in-cell code is developed for modelling the inductively coupled plasmas. An electrostatic direct implicit 1d3v particle-in-cell code EDIPIC is developed for plane geometry simulations of Hall thruster plasmas. The EDIPIC code includes several physical effects important for Hall thrusters: collisions with neutral atoms, turbulence, and secondary electron emission. In addition, the narrow sheath regions crucial for plasma-wall interaction are resolved in simulations. The code is parallelized to achieve fast run times. <p>Inductively coupled plasmas sustained by the external RF electromagnetic field are widely used in material processing reactors and electrodeless lighting sources. In a low pressure inductive discharge, the collisionless electron motion strongly affects the absorption of the external electromagnetic waves and, via the ponderomotive force, the density profile. The linear theory of the anomalous skin effect based on the linear electron trajectories predicts a strong decrease of the ponderomotive force for warm plasmas. Particle-in-cell simulations show that the nonlinear modification of electron trajectories by the RF magnetic field partially compensates the effects of electron thermal motion. As a result, the ponderomotive force in warm collisionless plasmas is stronger than predicted by linear kinetic theory. <p>Hall thrusters, where plasma is maintained by the DC electric field crossed with the stationary magnetic field, are efficient low-thrust devices for spacecraft propulsion. The energy exchange between the plasma and the wall in Hall thrusters is enhanced by the secondary electron emission, which strongly affects electron temperature and, subsequently, thruster operation. Particle-in-cell simulations show that the effect of secondary electron emission on electron cooling in Hall thrusters is quite different from predictions of previous fluid studies. Collisionless electron motion results in a strongly anisotropic, nonmonotonic electron velocity distribution function, which is depleted in the loss cone, subsequently reducing the electron wall losses compared to Maxwellian plasmas. Secondary electrons form two beams propagating between the walls of a thruster channel in opposite radial directions. The secondary electron beams acquire additional energy in the crossed external electric and magnetic fields. The energy increment depends on both the field magnitudes and the electron flight time between the walls. <p>A new model of secondary electron emission in a bounded plasma slab, allowing for emission due to the counter-propagating secondary electron beams, is developed. It is shown that in bounded plasmas the average energy of plasma bulk electrons is far less important for the space charge saturation of the sheath than it is in purely Maxwellian plasmas. A new regime with relaxation oscillations of the sheath has been identified in simulations. Recent experimental studies of Hall thrusters indirectly support the simulation results with respect to the electron temperature saturation and the channel width effect on the thruster discharge.
24

Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields

Sydorenko, Dmytro 14 June 2006 (has links)
In modern low pressure plasma discharges, the electron mean free path often exceeds the device dimensions. Under such conditions the electron velocity distribution function may significantly deviate from Maxwellian, which strongly affects the discharge properties. The description of such plasmas has to be kinetic and often requires the use of numerical methods. This thesis presents the study of kinetic effects in inductively coupled plasmas and Hall thrusters carried out by means of particle-in-cell simulations. The important result and the essential part of the research is the development of particle-in-cell codes. <p>An advective electromagnetic 1d3v particle-in-cell code is developed for modelling the inductively coupled plasmas. An electrostatic direct implicit 1d3v particle-in-cell code EDIPIC is developed for plane geometry simulations of Hall thruster plasmas. The EDIPIC code includes several physical effects important for Hall thrusters: collisions with neutral atoms, turbulence, and secondary electron emission. In addition, the narrow sheath regions crucial for plasma-wall interaction are resolved in simulations. The code is parallelized to achieve fast run times. <p>Inductively coupled plasmas sustained by the external RF electromagnetic field are widely used in material processing reactors and electrodeless lighting sources. In a low pressure inductive discharge, the collisionless electron motion strongly affects the absorption of the external electromagnetic waves and, via the ponderomotive force, the density profile. The linear theory of the anomalous skin effect based on the linear electron trajectories predicts a strong decrease of the ponderomotive force for warm plasmas. Particle-in-cell simulations show that the nonlinear modification of electron trajectories by the RF magnetic field partially compensates the effects of electron thermal motion. As a result, the ponderomotive force in warm collisionless plasmas is stronger than predicted by linear kinetic theory. <p>Hall thrusters, where plasma is maintained by the DC electric field crossed with the stationary magnetic field, are efficient low-thrust devices for spacecraft propulsion. The energy exchange between the plasma and the wall in Hall thrusters is enhanced by the secondary electron emission, which strongly affects electron temperature and, subsequently, thruster operation. Particle-in-cell simulations show that the effect of secondary electron emission on electron cooling in Hall thrusters is quite different from predictions of previous fluid studies. Collisionless electron motion results in a strongly anisotropic, nonmonotonic electron velocity distribution function, which is depleted in the loss cone, subsequently reducing the electron wall losses compared to Maxwellian plasmas. Secondary electrons form two beams propagating between the walls of a thruster channel in opposite radial directions. The secondary electron beams acquire additional energy in the crossed external electric and magnetic fields. The energy increment depends on both the field magnitudes and the electron flight time between the walls. <p>A new model of secondary electron emission in a bounded plasma slab, allowing for emission due to the counter-propagating secondary electron beams, is developed. It is shown that in bounded plasmas the average energy of plasma bulk electrons is far less important for the space charge saturation of the sheath than it is in purely Maxwellian plasmas. A new regime with relaxation oscillations of the sheath has been identified in simulations. Recent experimental studies of Hall thrusters indirectly support the simulation results with respect to the electron temperature saturation and the channel width effect on the thruster discharge.
25

Nabíjení prachových zrn v ionizovaných prostředích / Charging of dust grains in ionized media

Vaverka, Jakub January 2014 (has links)
No description available.
26

Modèle de transport d'électrons à basse énergie (~10 eV- 2 keV) pour applications spatiales (OSMOSEE, GEANT4) / Model of low-energy electrons (~10 eV-2000 eV) for space applications (OSMOSEE, GEANT4)

Pierron, Juliette 09 November 2017 (has links)
L’espace est un milieu hostile pour les équipements embarqués à bord des satellites. Les importants flux d’électrons qui les bombardent continuellement peuvent pénétrer à l’intérieur de leurs composants électroniques et engendrer des dysfonctionnements. Leur prise en compte nécessite des outils numériques 3D très performants, tels que des codes de transport d’électrons utilisant la méthode statistique de Monte-Carlo, valides jusqu’à quelques eV. Dans ce contexte, l’ONERA a développé, en partenariat avec le CNES, le code OSMOSEE pour l’aluminium. De son côté, le CEA a développé, pour le silicium, le module basse énergie MicroElec dans le code GEANT4. L’objectif de cette thèse, dans un effort commun entre l’ONERA, le CNES et le CEA, est d’étendre ces codes à différents matériaux. Pour ce faire, nous avons choisi d’utiliser le modèle des fonctions diélectriques, qui permet de modéliser le transport des électrons à basse énergie dans les métaux, les semi-conducteurs et les isolants. La validation des codes par des mesures du dispositif DEESSE de l’ONERA, pour l’aluminium, l’argent et le silicium, nous a permis d’obtenir une meilleure compréhension du transport des électrons à basse énergie, et par la suite, d’étudier l’effet de la rugosité de la surface. La rugosité, qui peut avoir un impact important sur le nombre d’électrons émis par les matériaux, n’est habituellement pas prise en compte dans les codes de transport, qui ne simulent que des matériaux idéalement plats. En ce sens, les résultats de ces travaux de thèse offrent des perspectives intéressantes pour les applications spatiales. / Space is a hostile environment for embedded electronic devices on board satellites. The high fluxes of energetic electrons that impact these satellites may continuously penetrate inside their electronic components and cause malfunctions. Taking into account the effects of these particles requires high-performant 3D numerical tools, such as codes dedicated to electrons transport using the Monte Carlo statistical method, valid down to a few eV. In this context, ONERA has developed, in collaboration with CNES, the code OSMOSEE for aluminum. For its part, CEA has developed for silicon the low-energy electron module MicroElec for the code GEANT4. The aim of this thesis, in a collaborative effort between ONERA, CNES and CEA, is to extend those two codes to different materials. To describe the interactions between electrons, we chose to use the dielectric function formalism that enables to overcome of the disparity of electronic band structures in solids, which play a preponderant role at low energy. From the validation of the codes, for aluminum, silver and silicon, by comparison with measurements from the experimental set-up DEESSE at ONERA, we obtained a better understanding of the transport of low energy electrons in solids. This result enables us to study the effect of the surface roughness. This parameter, which may have a significant impact on the electron emission yield, is not usually taken into account in Monte Carlo transport codes, which only simulate ideally flat materials. In this sense, the results of this thesis offer interesting perspectives for space applications.
27

Validation d'un nouveau logiciel de simulation tridimensionnel du Multipactor par le calcul et l'expérimentation / Validation of a new Multipacting three-dimensional simulation software by calculation and experimentation

Hamelin, Thibault 29 June 2015 (has links)
Le multipactor est un phénomène parasite qui se produit dans les dispositifs où l'on transmet une onde hyperfréquence sous vide tels que les tubes électroniques à vide, les cavités résonnantes pour accélérateurs de particules et les circuits micro-ondes à bord des satellites. Il consiste en une avalanche d'électrons mis en mouvement par un champ hyperfréquence. La simulation du multipactor est cruciale dans tout design de structure HF sous vide. Les géométries complexes 3D d'objets imposent de posséder des outils de simulations tridimensionnels pour prédire ce phénomène. Le premier travail de cette thèse a consisté à valider un logiciel de simulation 3D du multipactor, Musicc3D, à la fois par le calcul et l'expérimentation. Une étude théorique à une dimension ainsi qu'une simulation 2D éprouvée ont été réalisées et les résultats du logiciel Musicc3D ont été favorablement confrontés à leurs résultats. Des règles de définition du maillage 3D ont été établies pour un bon fonctionnement de la simulation 3D. Toujours pour valider la simulation, l'ensemble des cavités accélératrices construites par l'IPNO ces dernières années a été simulé et favorablement comparé aux observations de barrières de multipactor quand elles existaient. Dans le but d'exploiter les prédictions de la simulation 3D, mais aussi de la valider et enfin d'être capable de qualifier différents matériaux et/ou états de surfaces, une cavité résonnante équipée de mesures dédiées au multipactor a été construite. Les premiers résultats obtenus avec cette cavité ont été favorablement comparés à la simulation. / Multipacting is a parasitic phenomenon and extremely detrimental in devices where there is a ultra high frequency wave transmitted in a vacuum environment such as vacuum electron tubes, resonant cavities for particle accelerators and microwave circuits on board of satellites. It consists of an avalanche of electrons put in motion by a microwave field. Multipacting simulation is crucial in any HF structure design. The complex 3D geometrics obligates to have three-dimensional simulation tools to predict this phenomenon. The first study in this thesis consisted in validating a 3D simulation software of Multipacting, Musicc3D, by calculation and experimentation. A theoretical study with one dimension and a a tested 2D simulation were carried out and the results of the software Musicc3D were favorably confronted to their results. 3D grid definition rules were established for the proper working of the 3D simulation. Also to validate the simulation, the whole of the park of accelerating cavities built by the IPNO these last years was simulated and favorably compared with the observations of barriers of Multipacting when they existed. With an aim of exploiting the predictions of the 3D simulation, but also to validate it and finally be able to qualify various materials and/or state of surfaces, a resonant cavity equipped with measurements dedicated for Multipacting was built. The first results obtained with this cavity were favorably compared to the simulation.
28

Towards Single Molecule Imaging - Understanding Structural Transitions Using Ultrafast X-ray Sources and Computer Simulations

Caleman, Carl January 2007 (has links)
X-ray lasers bring us into a new world in photon science by delivering extraordinarily intense beams of x-rays in very short bursts that can be more than ten billion times brighter than pulses from other x-ray sources. These lasers find applications in sciences ranging from astrophysics to structural biology, and could allow us to obtain images of single macromolecules when these are injected into the x-ray beam. A macromolecule injected into vacuum in a microdroplet will be affected by evaporation and by the dynamics of the carrier liquid before being hit by the x-ray pulse. Simulations of neutral and charged water droplets were performed to predict structural changes and changes of temperature due to evaporation. The results are discussed in the aspect of single molecule imaging. Further studies show ionization caused by the intense x-ray radiation. These simulations reveal the development of secondary electron cascades in water. Other studies show the development of these cascades in KI and CsI where experimental data exist. The results are in agreement with observation, and show the temporal, spatial and energetic evolution of secondary electron cascades in the sample. X-ray diffraction is sensitive to structural changes on the length scale of chemical bonds. Using a short infrared pump pulse to trigger structural changes, and a short x-ray pulse for probing it, these changes can be studied with a temporal resolution similar to the pulse lengths. Time resolved diffraction experiments were performed on a phase transition during resolidification of a non-thermally molten InSb crystal. The experiment reveals the dynamics of crystal regrowth. Computer simulations were performed on the infrared laser-induced melting of bulk ice, giving a comprehension of the dynamics and the wavelength dependence of melting. These studies form a basis for planning experiments with x-ray lasers.
29

Metoda napěťového kontrastu při detekci sekundárních elektronů scintilačním detektorem ve VP SEM / Voltage contrast method at detection of secondary electrons by scintillation detector in VP SEM

Jabůrek, Ladislav January 2011 (has links)
This thesis deals with scanning electron microscope working at higher pressure in the specimen chamber. The main goal was to study the voltage contrast on the PN junction of the transistor under suitable working conditions for using environmental scanning microscope. The observation of sample was enabled by a scintillation detector designed for observation of high pressure.
30

Caractérisation et modélisation des propriétés d’émission électronique sous champ magnétique pour des systèmes RF hautes puissances sujets à l’effet multipactor / Characterization and modelling of the secondary electron emission properties under magnetic field for high power RF systems subject to Multipactor effect

Fil, Nicolas 10 November 2017 (has links)
La fusion nucléaire contrôlée par confinement magnétique avec les réacteurs de type Tokamaks et les applications spatiales ont en commun d’utiliser des composants Haute-Fréquence (HF) sous vide à forte puissance. Ces composants peuvent être sujets à l’effet multipactor qui augmente la densité électronique dans le vide au sein des systèmes, ce qui est susceptible d’induire une dégradation des performances des équipements et de détériorer les composants du système. Ces recherches consistent à améliorer la compréhension et la prédiction de ces phénomènes. Dans un premier temps nous avons réalisé une étude de sensibilité de l’effet multipactor au rendement d’émission électronique totale (noté TEEY). Cette étude a permis de montrer que l’effet multipactor est sensible à des variations d’énergies autour de la première énergie critique et dans la gamme d’énergies entre la première énergie critique et l’énergie du maximum. De plus, les composants HF utilisés dans les réacteurs Tokamak et dans le domaine du spatial peuvent être soumis à un champ magnétique continu. Nous avons donc développé un nouveau dispositif expérimental afin d’étudier ce phénomène. Le fonctionnement du dispositif et la méthode de mesure ont été analysées et optimisées à l’aide de modélisations numériques avec le logiciel PIC SPIS. Une fois que l’utilisation du dispositif a été optimisée et que le protocole de mesures a été validé, nous avons étudié l’influence d’un champ magnétique uniforme et continu sur le TEEY du cuivre. Nous avons démontré que le rendement d’émission électronique totale du cuivre est influencé par la présence d’un champ magnétique et par conséquent également l’effet multipactor. / Space communication payload as well as magnetic confinement fusion devices, among other applications, are affected by multipactor effect. This undesirable phenomenon can appear inside high frequency (HF) components under vacuum and lead to increase the electron density in the vacuum within the system. Multipactor effect can thus disturb the wave signal and trigger local temperature increases or breakdowns. This PhD research aims to improve our understanding and the prediction of the multipactor effect. The multipactor phenomenon is a resonant process which can appear above a certain RF power threshold. To determine this power threshold, experimental tests or/and simulations are commonly used. We have made a study to evaluate the multipactor power threshold sensitivity to the TEEY. Two particular critical parameters have been found: first cross-over energy and the energies between the first cross-over and the maximum energies. In some situations, the HF components are submitted to DC magnetic fields which might affect the electron emission properties and hence the multipactor power threshold. Current multipactor simulation codes don’t take into account the effect of the magnetic field on the TEEY. A new experimental setup specially designed to investigate this effect was developed during this work. Our new experimental setup and the associated TEEY measurement technique were analysed and optimized thanks to measurements and SPIS simulations. We used the setup to study the influence of magnetic field perpendicular to the sample surface on the TEEY of copper. We have demonstrated that the magnetic field affects the copper TEEY, and hence multipactor power threshold.

Page generated in 0.1212 seconds