• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In-vivo radiotherapy dosimetry

Edwards, Craig Richard January 2002 (has links)
No description available.
2

Protons, other Light Ions, and 60Co Photons : Study of Energy Deposit Clustering via Track Structure Simulations

Bäckström, Gloria January 2013 (has links)
Radiotherapy aims to sterilize cancer cells through ionization induced damages to their DNA whilst trying to reduce dose burdens to healthy tissues. This can be achieved to a certain extent by optimizing the choice of radiation to treat the patient, i.e. the types of particles and their energy based on their specific interaction patterns. In particular, the formation of complex clusters of energy deposits (EDs) increases with the linear energy transferred for a given particle. These differences cause variation in the relative biological effectiveness (RBE). The complexity of ED clusters might be related to complex forms of DNA damage, which are more difficult to repair and therefore prone to inactivate the cells. Hence, mapping of the number and complexity of ED clusters for different radiation qualities could aid to infer a surrogate measure substituting physical dose and LET as main predictors for the RBE .   In this work the spatial patterns of EDs at the nanometre scale were characterized for various energies of proton, helium, lithium and carbon ions. A track structure Monte Carlo code, LIonTrack, was developed to accurately simulate the light ion tracks in liquid water. The methods to emulate EDs at clinical dose levels in cell nucleus-sized targets for both 60Co photons and light ions were established, and applied to liquid water targets. All EDs enclosed in such targets were analyzed with a specifically developed cluster algorithm where clustering was defined by a single parameter, the maximum distance between nearest neighbour EDs. When comparing measured RBE for different radiation qualities, there are cases for which RBE do not  increase with LET but instead increase with the frequencies of high order ED clusters. A test surrogate-measure based on ED cluster frequencies correlated to parameters of experimentally determined cell survival. The tools developed in this thesis can facilitate future exploration of semi-mechanistic modelling of the RBE.
3

Etudes de la convergence d'un calcul Monte Carlo de criticité : utilisation d'un calcul déterministe et détection automatisée du transitoire / Studies on the convergence of a Monte Carlo criticality calculation : coupling with a deterministic code and automated transient detection

Jinaphanh, Alexis 03 December 2012 (has links)
Les calculs Monte Carlo en neutronique-criticité permettent d'estimer le coefficient de multiplication effectif ainsi que des grandeurs locales comme le flux ou les taux de réaction. Certaines configurations présentant de faibles couplages neutroniques (modélisation de cœurs complets, prise en compte de profils d'irradiations, ...) peuvent conduire à de mauvaises estimations du kef f ou des flux locaux. L'objet de cette thèse est de contribuer à rendre plus robuste l'algorithme Monte Carlo utilisé et améliorer la détection de la convergence. L'amélioration du calcul envisagée passe par l'utilisation, lors du calcul Monte Carlo, d'un flux adjoint obtenu par un pré-calcul détermi- niste réalisé en amont. Ce flux adjoint est ensuite utilisé pour déterminer le positionnement de la première génération, modifier la sélection des sites de naissance, et modifier la marche aléatoire par des stratégies de splitting et de roulette russe. Une méthode de détection automatique du transitoire a été développée. Elle repose sur la modélisation des séries de sortie par un processus auto régressif d'ordre 1 et un test statistique dont la variable de décision est la moyenne du pont de Student. Cette méthode a été appli- quée au kef f et à l'entropie de Shannon. Elle est suffisamment générale pour être utilisée sur n'importe quelle série issue d'un calcul Monte Carlo itératif. Les méthodes développées dans cette thèse ont été testées sur plusieurs cas simplifiés présentant des difficultés de convergence neutroniques. / Monte Carlo criticality calculation allows to estimate the effective mu- tiplication factor as well as local quantities such as local reaction rates. Some configurations presenting weak neutronic coupling (high burn up pro- file, complete reactor core, ...) may induce biased estimations for kef f or reaction rates. In order to improve robustness of the iterative Monte Carlo méthods, a coupling with a deterministic code was studied. An adjoint flux is obtained by a deterministic calculation and then used in the Monte Carlo. The initial guess is then automated, the sampling of fission sites is modi- fied and the random walk of neutrons is modified using splitting and russian roulette strategies. An automated convergence detection method has been developped. It locates and suppresses the transient due to the initialization in an output series, applied here to kef f and Shannon entropy. It relies on modeling stationary series by an order 1 auto regressive process and applying statistical tests based on a Student Bridge statistics. This method can easily be extended to every output of an iterative Monte Carlo. Methods developed in this thesis are tested on different test cases.
4

Modes d’exposition au xénon-133 dans un bâtiment réacteur / Exposure mode study to xenon-133 in a reactor building

Perier, Aurélien 14 October 2014 (has links)
Le travail décrit dans cette thèse porte sur l’évaluation du mode d’exposition externe et interne au xénon-133. Ce radionucléide est un des principaux produits de fission du combustible des réacteurs nucléaires. En cas de défaut de gaine combustible, le xénon-133 peut potentiellement exposer le personnel lors de ses interventions dans le bâtiment réacteur. En dosimétrie, les simulations Monte-Carlo sont des outils adaptés pour simuler le transport des rayonnements ionisants dans la matière. A partir des critères de radioprotection actuels, nous avons développé de nouvelles méthodes afin d’améliorer notre compréhension de l’exposition externe et interne auxénon-133 à l’intérieur d’un bâtiment réacteur. Ces nouvelles approches sont basées sur l’utilisation d’un fantôme anthropomorphe, d’une géométrie réaliste de bâtiment réacteur, de simulations Monte-Carlo GEANT4 et de modèles en compartiments. L’exposition externe dans un bâtiment réacteur a été menée en retenant un scénario d’exposition réaliste et conservatif. Nous avons quantifié le débit de dose efficace et le débit de dose équivalente au cristallin. L’exposition interne se produit lorsque le xénon-133 est inhalé. Les poumons sont les premiers organes exposés par l’inhalation du xénon-133, leur débit de dose équivalente a été quantifié. Un modèle biocinétique a été utilisé pour évaluer l’exposition interne au xénon-133. Cette thèse a permis de quantifier les grandeurs dosimétriques liées aux modes d’exposition externe et interne au xénon-133, d’étudier l’impact des changements de limites dosimétriques introduits par la Commission Internationale de Radioprotection prochainement retranscrits dans la réglementation française, et de comprendre la cinétique du xénon-133 dans le corps humain. Nous avons montré que les grandeurs dosimétriques sont nettement inférieures aux limites dosimétriques de la réglementation actuelle et future. / The work described in this thesis focuses on the external and internal dose assessment to xenon-133. During the nuclear reactor operation, fission products and radioactive inert gases, as ¹³³Xe, are generated and might be responsible for the exposure of workers incase of clad defect.Particle Monte Carlo transport code is adapted inradioprotection to quantify dosimetric quantities.The study of exposure to xenon-133 is conducted byusing Monte-Carlo simulations based on GEANT4, ananthropomorphic phantom, a realistic geometry of thereactor building, and compartmental models.The external exposure inside a reactor building isconducted with a realistic and conservative exposurescenario. The effective dose rate and the eye lensequivalent dose rate are determined by Monte-Carlosimulations. Due to the particular emission spectrum ofxenon-133, the equivalent dose rate to the lens of eyesis discussed in the light of expected new eye doselimits.The internal exposure occurs while xenon-133 isinhaled. The lungs are firstly exposed by inhalation, andtheir equivalent dose rate is obtained by Monte-Carlosimulations. A biokinetic model is used to evaluate theinternal exposure to xenon-133.This thesis gives us a better understanding to thedosimetric quantities related to external and internalexposure to xenon-133. Moreover the impacts of thedosimetric changes are studied on the current andfuture dosimetric limits. The dosimetric quantities arelower than the current and future dosimetric limits.
5

Modèle de transport d'électrons à basse énergie (~10 eV- 2 keV) pour applications spatiales (OSMOSEE, GEANT4) / Model of low-energy electrons (~10 eV-2000 eV) for space applications (OSMOSEE, GEANT4)

Pierron, Juliette 09 November 2017 (has links)
L’espace est un milieu hostile pour les équipements embarqués à bord des satellites. Les importants flux d’électrons qui les bombardent continuellement peuvent pénétrer à l’intérieur de leurs composants électroniques et engendrer des dysfonctionnements. Leur prise en compte nécessite des outils numériques 3D très performants, tels que des codes de transport d’électrons utilisant la méthode statistique de Monte-Carlo, valides jusqu’à quelques eV. Dans ce contexte, l’ONERA a développé, en partenariat avec le CNES, le code OSMOSEE pour l’aluminium. De son côté, le CEA a développé, pour le silicium, le module basse énergie MicroElec dans le code GEANT4. L’objectif de cette thèse, dans un effort commun entre l’ONERA, le CNES et le CEA, est d’étendre ces codes à différents matériaux. Pour ce faire, nous avons choisi d’utiliser le modèle des fonctions diélectriques, qui permet de modéliser le transport des électrons à basse énergie dans les métaux, les semi-conducteurs et les isolants. La validation des codes par des mesures du dispositif DEESSE de l’ONERA, pour l’aluminium, l’argent et le silicium, nous a permis d’obtenir une meilleure compréhension du transport des électrons à basse énergie, et par la suite, d’étudier l’effet de la rugosité de la surface. La rugosité, qui peut avoir un impact important sur le nombre d’électrons émis par les matériaux, n’est habituellement pas prise en compte dans les codes de transport, qui ne simulent que des matériaux idéalement plats. En ce sens, les résultats de ces travaux de thèse offrent des perspectives intéressantes pour les applications spatiales. / Space is a hostile environment for embedded electronic devices on board satellites. The high fluxes of energetic electrons that impact these satellites may continuously penetrate inside their electronic components and cause malfunctions. Taking into account the effects of these particles requires high-performant 3D numerical tools, such as codes dedicated to electrons transport using the Monte Carlo statistical method, valid down to a few eV. In this context, ONERA has developed, in collaboration with CNES, the code OSMOSEE for aluminum. For its part, CEA has developed for silicon the low-energy electron module MicroElec for the code GEANT4. The aim of this thesis, in a collaborative effort between ONERA, CNES and CEA, is to extend those two codes to different materials. To describe the interactions between electrons, we chose to use the dielectric function formalism that enables to overcome of the disparity of electronic band structures in solids, which play a preponderant role at low energy. From the validation of the codes, for aluminum, silver and silicon, by comparison with measurements from the experimental set-up DEESSE at ONERA, we obtained a better understanding of the transport of low energy electrons in solids. This result enables us to study the effect of the surface roughness. This parameter, which may have a significant impact on the electron emission yield, is not usually taken into account in Monte Carlo transport codes, which only simulate ideally flat materials. In this sense, the results of this thesis offer interesting perspectives for space applications.
6

Etude et validation clinique d'un modèle aux moments entropique pour le transport de particules énergétiques : application aux faisceaux d'électrons pour la radiothérapie externe / Study and clinical validation of a deterministic moments based algorithm dedicated to the energetic particles transport simulations : application to the electron beams in external radiotherapy

Caron, Jérôme 07 December 2016 (has links)
En radiothérapie externe, les simulations des dépôts de dose aux patients sont réalisées sur des systèmesde planification de traitement (SPT) dotés d'algorithmes de calcul qui diffèrent dans leur modélisationdes processus physiques d'interaction des électrons et des photons. Or ces SPT, bien que rapides enclinique, montrent parfois des erreurs significatives aux abords des hétérogénéités du corps humain. Montravail de thèse a consisté à valider le modèle aux moments entropique M1 pour des faisceaux d'électronscliniques. Cet algorithme développé au CELIA dans le cadre de la physique des plasmas repose sur larésolution de l'équation cinétique de transport de Boltzmann linéarisée selon une décomposition auxmoments. M1 nécessite une fermeture du système d'équations basée sur le H-Théorème (maximisationde l'entropie). Les cartographies de dose 1D de faisceaux d'électrons de 9 et 20 MeV issues de M1 ontété comparées à celles issues de codes de référence : macro Monte-Carlo clinique (eMC) et full Monte-Carlo (GEANT-MCNPX) ainsi qu'à des données expérimentales. Les cas tests consistent en des fantômesd'abord homogènes puis de complexité croissante avec insertion d'hétérogéenéités mimant les tissus osseuxet pulmonaire. In fine, le modèle aux moments M1 démontre des propriétés de précision meilleures quecertains algorithmes de type Pencil Beam Kernel encore utilisés cliniquement et proches de celles fourniespar des codes full Monte-Carlo académiques ou macro Monte-Carlo cliniques, même dans les cas testscomplexes retenus. Les performances liées aux temps de calcul de M1 ont été évaluées comme étantmeilleures que celles de codes Monte-Carlo. / In radiotherapy field, dose deposition simulations in patients are performed on Treatment Planning Systems (TPS) equipped with specific algorithms that differ in the way they model the physical interaction processes of electrons and photons. Although those clinical TPS are fast, they show significant discrepancies in the neighbooring of inhomogeneous tissues. My work consisted in validating for clinical electron beams an entropic moments based algorithm called M1. Develelopped in CELIA for warm and dense plasma simulations, M1 relies on the the resolution of the linearized Boltzmann kinetic equation for particles transport according to a moments decomposition. M1 equations system requires a closure based on H-Theorem (entropy maximisation). M1 dose deposition maps of 9 and 20 MeV electron beams simulations were compared to those extracted from reference codes simulations : clinical macro Monte-Carlo (eMC) and full Monte-carlo (GEANT4-MCNPX) codes and from experimental data as well. The different test cases consisted in homogeneous et complex inhomogeneous fantoms with bone and lung inserts. We found that M1 model provided a dose deposition accuracy better than some Pencil Beam Kernel algorithm and close of those furnished by clinical macro and academic full Monte-carlo codes, even in the worst inhomogeneous cases. Time calculation performances were also investigated and found better than the Monte-Carlo codes.
7

Validation des calculs d'échauffements photoniques en réacteur d'irradiation au moyen du programme expérimental AMMON et du dispositif CARMEN / Validation of photon-heating calculations in material-testing reactors by means of the AMMON experimental program and the CARMEN device

Lemaire, Matthieu 13 November 2015 (has links)
Le Réacteur Jules Horowitz (RJH) est un réacteur d’irradiation technologique actuellement en construction au CEA Cadarache. Ce réacteur permettra de réaliser les études scientifiques sur le comportement des matériaux et des combustibles sous irradiation.Pour répondre aux enjeux du RJH, il est nécessaire de valider les outils de calcul des échauffements photoniques (les codes de calcul et la librairie européenne JEFF3.1.1 de données nucléaires) pour le cas spécifique du RJH. Cette problématique est traitée en 3 volets dans cette thèse.Le 1er volet a consisté à quantifier le biais de calcul dû aux données nucléaires de la librairie européenne JEFF3.1.1 pour les calculs d’échauffements photoniques dans le RJH. Ce travail repose sur l’interprétation, avec le code TRIPOLI-4, de mesures d’échauffements réalisées dans la maquette critique EOLE du CEA Cadarache.Le 2ème volet a consisté à obtenir des éléments sur les biais de calcul des échauffements photoniques dus aux méthodes de calcul elles-mêmes. La comparaison calcul / calcul entre différents codes Monte Carlo met en évidence l’importance du transport des particules chargées pour les calculs d’échauffements.Le 3ème volet de ce travail a consisté à fournir des points de comparaison calcul / mesure pour des mesures d’échauffements réalisées dans le réacteur OSIRIS avec une première version du dispositif CARMEN. Le dispositif CARMEN est un projet de dispositif de mesure multi-détecteur innovant pour le RJH. En conclusion, cette thèse a apporté des éléments de validation des calculs d’échauffements photoniques pour le RJH. Ces éléments ont d’ores et déjà été capitalisés pour les études de sûreté du RJH. / The Jules Horowitz Reactor (JHR) is the next MTR under construction at CEA Cadarache research center. The JHR will be a major research infrastructure for the test of structural material and fuel behavior under irradiation.To be up to the challenges set by the JHR, It is necessary to validate photon-heating calculation tools (calculation codes and the European nuclear-data JEFF3.1.1 library) for specific use in the JHR. This topic is handled with a three-prong work plan. The first part consisted in quantifying the calculation bias due to the JEFF3.1.1 nuclear-data library on JHR photon-heating calculations. This work relies on the interpretation, with the TRIPOLI-4 code, of heating measurements carried out in the EOLE critical mock-up at CEA Cadarache.The second part of this work is dedicated to the determination of photon-heating calculation biases linked to the approximations of calculation schemes. The calculation / calculation comparison between different Monte Carlo codes highlights the importance of charged-particle transport for heating calculations.The third part of this work consisted in providing calculation / measurement comparisons for heating measurements carried out in the OSIRIS reactor with a prototype of the CARMEN device. The CARMEN device aims at measuring neutron flux, photon flux and nuclear heating simultaneously in the different experimental locations of JHR. In conclusion, this work brings forth validation elements for JHR photon-heating calculations. These elements are already taken into account for the estimation of biases and uncertainties associated with photon-heating calculations for JHR performance and safety studies.
8

The design of reactor cores for civil nuclear marine propulsion

Alam, Syed Bahauddin January 2018 (has links)
Perhaps surprisingly, the largest experience in operating nuclear power plants has been in nuclear naval propulsion, particularly submarines. This accumulated experience may become the basis of a proposed new generation of compact nuclear power plant designs. In an effort to de-carbonise commercial freight shipping, there is growing interest in the possibility of using nuclear propulsion systems. Reactor cores for such an application would need to be fundamentally different from land-based power generation systems, which require regular refueling, and from reactors used in military submarines, as the fuel used could not conceivably be as highly enriched. Nuclear-powered propulsion would allow ships to operate with low fuel costs, long refueling intervals, and minimal emissions; however, currently such systems remain largely confined to military vessels. This research project undertakes computational modeling of possible soluble-boron-free (SBF) reactor core designs for this application, with a view to informing design decisions in terms of choices of fuel composition, materials, core geometry and layout. Computational modeling using appropriate reactor physics (e.g. WIMS, MONK, Serpent and PANTHER), thermal-hydraulics etc. codes (e.g. COBRA-EN) is used for this project. With an emphasis on reactor physics, this study investigates possible fuel assembly and core designs for civil marine propulsion applications. In particular, it explores the feasibility of using uranium/thorium-rich fuel in a compact, long-life reactor and seek optimal choices and designs of the fuel composition, reactivity control, assembly geometry, and core loading in order to meet the operational needs of a marine propulsion reactor. In this reactor physics and 3D coupled neutronics/thermal-hydraulics study, we attempt to design a civil marine reactor core that fulfills the objective of providing at least 15 effective full-power-years (EFPY) life at 333 MWth. In order to unleash the benefit of thorium in a long life core, the micro-heterogeneous ThO2-UO2 duplex fuel is well-positioned to be utilized in our proposed civil marine core. Unfortunately, A limited number of studies of duplex fuel are available in the public domain, but its use has never been examined in the context of a SBF environment for long-life small modular rector (SMR) core. Therefore, we assumed micro-heterogeneous ThO2-UO2 duplex fuel for our proposed marine core in order to explore its capability. For the proposed civil marine propulsion core design, this study uses 18% U-235 enriched micro-heterogeneous ThO2-UO2 duplex fuel. To provide a basis for comparison we also evaluate the performance of homogeneously mixed 15% U-235 enriched all-UO2 fuel. This research also attempts to design a high power density core with 14 EFPY while satisfying the neutronic and thermal-hydraulics safety constraints. A core with an average power density of 100 MW/m3 has been successfully designed while obtaining a core life of 14 years. The average core power density for this core is increased by ∼50% compared to the reference core design (63 MW/m3 and is equivalent to Sizewell B PWR (101.6 MW/m3 which means capital costs could be significantly reduced and the economic attractiveness of the marine core commensurately improved. In addition, similar to the standard SMR core, a reference core with a power density of 63 MW/m3 has been successfully designed while obtaining a core life of ∼16 years. One of the most important points that can be drawn from these studies is that a duplex fuel lattice needs less burnable absorber than uranium-only fuel to achieve the same poison performance. The higher initial reactivity suppression and relatively smaller reactivity swing of the duplex can make the task of reactivity control through BP design in a thorium-rich core easier. It is also apparent that control rods have greater worth in a duplex core, reducing the control material requirements and thus potentially the cost of the rods. This research also analyzed the feasibility of using thorium-based duplex fuel in different cases and environments to observe whether this fuel consistently exhibit superior performance compared to the UO2 core in both the assembly and whole-core levels. The duplex fuel/core consistently exhibits superior performance in consideration of all the neutronic and TH constraints specified. It can therefore be concluded from this study that the superior performance of the thorium-based micro-heterogeneous ThO2-UO2 duplex fuel provides enhanced confidence that this fuel can be reliably used in high power density and long-life SBF marine propulsion core systems, offering neutronic advantages compared to the all-UO2 fuel. Last, but not least, considering all these factors, duplex fuel can potentially open the avenue for low-enriched uranium (LEU) SBF cores with different configurations. Motivated by growing environmental concerns and anticipated economic pressures, the overall goal of this study is to examine the technological feasibility of expanding the use of nuclear propulsion to civilian maritime shipping and to identify and propose promising candidate core designs.

Page generated in 0.4343 seconds