• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an Improved Thermal-Hydraulic Modeling of the Jules Horowitz Reactor

Pegonen, Reijo January 2017 (has links)
The newest European high performance material testing reactor, the Jules Horowitz Reactor, is under construction at CEA Cadarache research center in France. The reactor will support existing and future nuclear reactor technologies, with the first criticality expected at the end of this decade. The current/reference CEA methodology for simulating the thermalhydraulic behavior of the reactor gives reliable results. The CATHARE2 code simulates the full reactor circuit with a simplified approach for the core. The results of this model are used as boundary conditions in a three-dimensional FLICA4 core simulation. However this procedure needs further improvement and simplification to shorten the computational requirements and give more accurate core level data. The reactor’s high performance (e.g. high neutron fluxes, high power densities) and its design (e.g. narrow flow channels in the core) render the reactor modeling challenging compared to more conventional designs. It is possible via thermal-hydraulic or solely hydraulic Computational Fluid Dynamics (CFD) simulations to achieve a better insight of the flow and thermal aspects of the reactor’s performance. This approach is utilized to assess the initial modeling assumptions and to detect if more accurate modeling is necessary. There were no CFD thermal-hydraulic publications available on the JHR prior to the current PhD thesis project. The improvement process is split into five steps. In the first step, the state-of-the-art CEA methodology for thermal-hydraulic modeling of the reactor using the system code CATHARE2 and the core analysis code FLICA4 is described. In the second and third steps, a CFD thermal-hydraulic simulations of the reactor’s hot fuel element are undertaken with the code STAR-CCM+. Moreover, a conjugate heat transfer analysis is performed for the hot channel. The knowledge of the flow and temperature fields between different channels is important for performing safety analyses and for accurate modeling. In the fourth step, the flow field of the full reactor vessel is investigated by conducting CFD hydraulic simulations in order to identify the mass flow split between the 36 fuel elements and to describe the flow field in the upper and lower plenums. As a side study a thermal-hydraulic calculation, similar to those performed in previous steps is undertaken utilizing the outcome of the hydraulic calculation as an input. The final step culminates by producing an improved, more realistic, purely CATHARE2 based, JHR model, incorporating all the new knowledge acquired from the previous steps. The primary outcome of this four year PhD research project is the improved, more realistic, CATHARE2 model of the JHR with two approaches for the hot fuel element. Furthermore, the project has led to improved thermal-hydraulic knowledge of the complex reactor (including the hot fuel element), with the most prominent findings presented. / <p>QC 20161208</p> / DEMO-JHR
2

Étude des relations microstructures : propriétés d'usage, de poudres fissiles d'alliages U(Mo) / Study of relationships between microstructures and usual properties, of U(Mo) alloys fissile particles

Champion, Guillaume 14 October 2013 (has links)
Cette thèse participe au développement d’un combustible particulaire uranium-molybdène dans le cadre de la conversion des réacteurs de recherche de haute-performance en France et à travers le monde, à l’utilisation de combustibles faiblement enrichis (LEU : Low Enriched Uranium à opposer à HEU : High Enriched Uranium). Ce dernier se présente sous la forme d’une dispersion de particules uranifères U(Mo) dans une matrice à base d’aluminium et une question majeure persiste quant à l’interaction se produisant entre le composé U(Mo) et la matrice d’aluminium. En effet, il a été constaté que sous certaines conditions d’irradiation, cette interaction donne lieu à un gonflement instable de la plaque combustible qui résulte d’une percolation accentuée et imprévisible de bulles de gaz de fission à l’interface entre une couche d’interaction formée autour des particules U(Mo) et la matrice aluminium. Cette thèse s’est attachée à développer plusieurs solutions « remèdes » visant à modifier et/ou diminuer, voire inhiber l’interaction combustible/matrice et à améliorer la rétention des bulles de gaz de fission. Pour atteindre ces objectifs, deux voies ont été testées au cours de la thèse, (i) l’amélioration des propriétés microstructurales intrinsèques de l’alliage U(Mo) et (ii) la modification de l’interface âme combustible / matrice, par le dépôt de couches à effet barrière. En ce qui concerne le premier axe de recherche, une campagne de caractérisation des poudres de référence a, au préalable, été réalisée, permettant d’identifier des paramètres clés pour le développement de produits à microstructure « optimisée ». Deux produits innovants ont ainsi été développés puis soumis à caractérisation : une poudre atomisée-broyée et une poudre obtenue par magnésiothermie. Nous avons démontré que ces produits peuvent être un atout vis-à-vis de la problématique de rétention des bulles de gaz de fission. En ce qui concerne la problématique de la formation d’une couche d’interaction, un troisième produit, reposant sur le génie des procédés, a été développé : une poudre U(Mo) atomisée, revêtue d’une couche type alumine. Nous avons démontré qu’une couche comprise entre 100 et 200 nm permettait d’inhiber la croissance d’une couche d’interaction activée thermiquement. Nos recommandations finales ont ainsi pu être données en vue de la réalisation de tests d’irradiation « en-pile » pour la qualification d’un combustible U(Mo) optimisé. / This thesis enters in the Material and Testing Reactors (MTRs) framework where the necessity to use a Low-Enriched Uranium (LEU) fuel has led to the development of a dense fissile material based on U(Mo) alloys. The designed fuel is a composite material, made of dispersed U(Mo) particles embedded in an Al based matrix. Post-Irradiation Examinations of these LEU fuel plates showed that the irradiation behaviour of the fuel is not fit for purpose yet. This is mainly due to the growth of an interaction layer between the fuel and the matrix and to the bad gas retention efficiency of the fuel particles. This thesis had for purpose the development of several solutions in order to modify and/or decrease or even inhibit the fuel/matrix interaction and to increase the gas retention capacities of the fuel. In order to achieve so, two solutions have been tested during this thesis, (i) optimization of the U(Mo) alloy intrinsic microstructural properties and (ii) modificationof the fuel meat/matrix interface, through the deposition of a layer acting as a ''diffusion barrier''. Concerning the first axe of study, a characterization campaign of the reference powders has been realized, as a first step, in order to identify the key parameters for the development of products showing an “optimized” microstructure. Two novel products have then been developed: one based on a combined process associating “atomization + grinding” and another, which consists in a magnesiothermy process. These products were subject to characterization: X-Ray and neutron diffraction, electron backscattered diffraction and transmission electron microscopy have been performed in particular. We managed to show that these powders can be an advantage concerning the issue with the gas retention capacities of the fuel. Concerning the growth of the interaction layer, a third product, using process engineering, has been developed: an U(Mo) atomized powder, coated with an alumina like layer. We managed to show that a thickness between 100 and 200 nm of the layer allowed inhibiting the growth of a thermally activated interaction layer. Finally, our recommendations have been given in order to realize irradiation tests “in-pile” for the qualification of an optimized U(Mo) fuel.
3

Validation des calculs d'échauffements photoniques en réacteur d'irradiation au moyen du programme expérimental AMMON et du dispositif CARMEN / Validation of photon-heating calculations in material-testing reactors by means of the AMMON experimental program and the CARMEN device

Lemaire, Matthieu 13 November 2015 (has links)
Le Réacteur Jules Horowitz (RJH) est un réacteur d’irradiation technologique actuellement en construction au CEA Cadarache. Ce réacteur permettra de réaliser les études scientifiques sur le comportement des matériaux et des combustibles sous irradiation.Pour répondre aux enjeux du RJH, il est nécessaire de valider les outils de calcul des échauffements photoniques (les codes de calcul et la librairie européenne JEFF3.1.1 de données nucléaires) pour le cas spécifique du RJH. Cette problématique est traitée en 3 volets dans cette thèse.Le 1er volet a consisté à quantifier le biais de calcul dû aux données nucléaires de la librairie européenne JEFF3.1.1 pour les calculs d’échauffements photoniques dans le RJH. Ce travail repose sur l’interprétation, avec le code TRIPOLI-4, de mesures d’échauffements réalisées dans la maquette critique EOLE du CEA Cadarache.Le 2ème volet a consisté à obtenir des éléments sur les biais de calcul des échauffements photoniques dus aux méthodes de calcul elles-mêmes. La comparaison calcul / calcul entre différents codes Monte Carlo met en évidence l’importance du transport des particules chargées pour les calculs d’échauffements.Le 3ème volet de ce travail a consisté à fournir des points de comparaison calcul / mesure pour des mesures d’échauffements réalisées dans le réacteur OSIRIS avec une première version du dispositif CARMEN. Le dispositif CARMEN est un projet de dispositif de mesure multi-détecteur innovant pour le RJH. En conclusion, cette thèse a apporté des éléments de validation des calculs d’échauffements photoniques pour le RJH. Ces éléments ont d’ores et déjà été capitalisés pour les études de sûreté du RJH. / The Jules Horowitz Reactor (JHR) is the next MTR under construction at CEA Cadarache research center. The JHR will be a major research infrastructure for the test of structural material and fuel behavior under irradiation.To be up to the challenges set by the JHR, It is necessary to validate photon-heating calculation tools (calculation codes and the European nuclear-data JEFF3.1.1 library) for specific use in the JHR. This topic is handled with a three-prong work plan. The first part consisted in quantifying the calculation bias due to the JEFF3.1.1 nuclear-data library on JHR photon-heating calculations. This work relies on the interpretation, with the TRIPOLI-4 code, of heating measurements carried out in the EOLE critical mock-up at CEA Cadarache.The second part of this work is dedicated to the determination of photon-heating calculation biases linked to the approximations of calculation schemes. The calculation / calculation comparison between different Monte Carlo codes highlights the importance of charged-particle transport for heating calculations.The third part of this work consisted in providing calculation / measurement comparisons for heating measurements carried out in the OSIRIS reactor with a prototype of the CARMEN device. The CARMEN device aims at measuring neutron flux, photon flux and nuclear heating simultaneously in the different experimental locations of JHR. In conclusion, this work brings forth validation elements for JHR photon-heating calculations. These elements are already taken into account for the estimation of biases and uncertainties associated with photon-heating calculations for JHR performance and safety studies.

Page generated in 0.065 seconds