Spelling suggestions: "subject:"sedimentary deology."" "subject:"sedimentary caveology.""
81 |
Paleopedology and fluvial sedimentology of the Upper Devonian Catskill Formation, Central Pennsylvania: A test of the distributive fluvial systemOest, Christopher January 2015 (has links)
The Upper Devonian Catskill Formation represents marginal marine and alluvial sediments which prograded into the Appalachian Basin during the Acadian Orogeny. Distributive fluvial systems (DFS) are prevalent in modern actively aggrading basins in all tectonic and climatic regimes and may be common in the rock record. In this study, I reinterpret the Catskill Formation as a prograding distributive fluvial system (DFS) on the basis of up-section variability in paleosols, channel sandstone textural trends, and alluvial architecture. At least three distinct pedotypes representative of prevailing soil forming conditions are identified during deposition of the Irish Valley, Sherman Creek, and Duncannon Members of the Catskill Formation. Increased paleosol drainage is inferred from an up-section transition from hydromorphic aqualfs within the Irish Valley Member to non-calcareous, uderts within the Duncannon Member. Qualitative field observations of channel sandstone morphology show an increase in channel size up-section. Channels occur as small isolated bodies at the base of the section, transitioning to relatively larger, amalgamated channels, and finally, large isolated channel bodies up-section. Sandstones are litharenites and coarsen-upward throughout the Catskill Formation overall. This coarsening upward trend results from increasing paleo-flow competency in larger channels up-section. These results are consistent with deposition of the Catskill Formation by DFS processes and demonstrate the utility of paleopedological analysis in interpreting alluvial depositional processes. Identifying DFS in the rock record has implications for paleosol-based paleoclimatic studies, as paleosols forming on prograding DFS have increased paleosol drainage up-section, which could potentially be misinterpreted as a shift from prevailing humid to arid paleoclimatic conditions. Recognition of DFS in the rock record also has implications for basin analysis and exploration of fluvial aquifers and hydrocarbon reservoirs, as the stratigraphic architecture of DFS are fundamentally different from tributary systems at the basin scale. / Geology
|
82 |
ICHNOLOGY OF THE MARINE K-PG INTERVAL: ENDOBENTHIC RESPONSE TO A LARGE-SCALE ENVIRONMENTAL DISTURBANCEWiest, Logan A. January 2014 (has links)
Most major Phanerozoic mass extinctions induced permanent or transient changes in ecological and anatomical characteristics of surviving benthic communities. Many infaunal marine organisms produced distinct suites of biogenic structures in a variety of depositional settings, thereby leaving an ichnological record preceding and following each extinction. This study documents a decrease in burrow size in Thalassinoides-dominated ichnoassemblages across the Cretaceous-Paleogene (K-Pg) boundary in shallow-marine sections along the Atlantic Coastal Plain (Walnridge Farm, Rancocas Creek, and Inversand Quarry, New Jersey) and the Gulf Coastal Plain (Braggs, Alabama and Brazos River and Cottonmouth Creek, Texas). At New Jersey sites, within a regionally extensive ichnoassemblage, Thalassinoides ichnospecies (isp.) burrow diameters (DTh) decrease abruptly by 26-29% (mean K=15.2 mm, mean Pg=11.2 mm; n=1767) at the base of the Main Fossiliferous Layer (MFL) or laterally equivalent horizons. The MFL has been previously interpreted as the K-Pg boundary based on last occurrence of Cretaceous marine reptiles, birds, and ammonites, as well as iridium anomalies and associated shocked quartz. Across the same event boundary at Braggs, Alabama, DTh of simple maze Thalassinoides structures from recurring depositional facies decrease sharply by 22% (mean K=13.1 mm, mean Pg=10.2 mm; n=26). Similarly, at the Cottonmouth Creek site, Texas, Thalassinoides isp. occurring above the previously reported negative £_13C shift and the first occurrence of Danian planktonic foraminifera are 17% smaller in diameter (mean K=21.5 mm, mean Pg=17.9 mm; n=53) than those excavated and filled prior to deposition of a cross-bedded, ejecta-bearing sandstone complex commonly interpreted as the Chicxulub ¡¥event deposit¡¦. At both of these impact-proximal regions, the Cretaceous and Paleogene burrows were preserved in similar lithologies, suggesting that a reduction in size cannot be attributed to sedimentological factors. At all localities, up-section trends in DTh are statistically significant (fÑfnf¬0.05; non-parametric Kruskal-Wallis test). Using the burrow diameter as a proxy for tracemaker body size, a reduction in DTh above the K-Pg boundary likely reflects dwarfing within the post-extinction community of decapod crustaceans. Dwarfing during the early recovery stages of the end-Cretaceous mass extinction, as recorded by ichnofossils, occurred within glauconite-producing (New Jersey), carbonate (Alabama), and siliciclastic (Texas) depositional environments and appears to be widespread. Because this ichnological signal appears to be a general phenomenon across the crisis interval, trace-fossil analysis provides a potential in-situ field method for constraining and correlating the stratigraphic position of the K-Pg and other extinction events, particularly in the absence of other macroscopic, microscopic, and geochemical indicators. Whereas overprinting of the original marine ichnofabric by morphologically similar continental traces is not a concern in lithified sections of Alabama and Texas, such an occurrence must be considered within unconsolidated sections. Within the Hornerstown Formation of New Jersey, a pervasive Thalassinoides framework contains traces of burrowing bees and wasps. Due to their penetration of up to 1 m, excavations just beyond the weathering front are insufficient for exposing the original marine ichnofabric. Insect burrow diameters (7-25 mm) are within the range of Thalassinoides traces (4-31 mm), exhibit occasional branching, and lack of ornamentation (bioglyphs) on the burrow walls. Therefore neither size nor gross morphology are adequate for distinguishing these widely diachronous and unrelated ichnites, especially when the insect burrows have been filled. However, the presence of backfill menisci and a beige clay halo help distinguish the ancient marine burrows, whereas highly oxidized fill and the occurrence of a terminal brooding chamber are diagnostic of modern insect burrows. / Geology
|
83 |
Impact of waves and storms on salt marsh erosion and sedimentation dynamicsHouttuijn Bloemendaal, Lucila J. 10 February 2025 (has links)
2024 / Salt marshes are dynamic coastal environments that continuously undergo lateral and vertical changes due to erosion and sedimentation dynamics that are mediated by physical and biological processes. This dissertation focuses on edge erosion and the drivers behind this form of marsh loss, as well as sedimentation of the marsh platform from storms and the potential sources of these sediment influxes. By studying these erosion and sedimentation dynamics in a variety of marshes, this dissertation contributes to our understanding of sediment movement in marsh systems and the drivers of marsh loss and resilience. The marsh edge is vulnerable to wave attack, which can dislodge sediment or induce mass failure through undercutting and destabilizing action of the edge. Vegetation and geotechnical properties affect the erodibility of the marsh edge, and all these factors interact to enhance or mitigate edge erosion and produce certain marsh edge morphologies. The first chapter of this dissertation investigates these different parameters and their relationship to the type and distribution of edge erosion occurring in the Great Marsh, Massachusetts. This work demonstrates that there is no clear relationship among wind fetch, geotechnical properties, and the type of edge erosion observed because of heterogeneity of the marsh. Marsh edges can erode in both exposed and sheltered areas, and the geotechnical characteristics of the marsh edge do not serve as indicators of edge erosion. Parameters and processes beyond those generally ascribed to be the drivers of edge erosion may therefore be responsible for marsh loss. The second chapter takes a closer look at the relationship between waves and marsh shoreline retreat, as the nature of this relationship can help predict marsh loss under varying wind and wave conditions, as well as have implications on the impact of storms on edge erosion and marsh loss. This study shows that there is no universal or generalizable linear relationship between wave power and retreat as previously suggested, but rather the relationships between these parameters are site-specific and are often not linear at all. As a result, in one marsh, storms may have an outsized impact on retreat, while in another marsh more moderate wind-wave conditions may contribute to most of the retreat. Thus, it is important to calibrate these relationships for each marsh to fully constrain marsh loss due to wave attack and predict future marsh erosion. This work further highlights the importance of utilizing statistically robust analyses and regressions to investigate these relationships.
Whereas storms contribute to marsh loss via edge erosion, they can also enhance vertical accretion and resilience of marshes to sea level rise (SLR) through storm-driven sediment transport and deposition. Major storms such as hurricanes can provide most of the inorganic sediment delivered to the marsh platform, though the source of these sediments is less understood for southeastern USA. Chapter 3 of this dissertation characterizes foraminifera communities in Hurricane Irma deposits in Sapelo Island, Georgia and compares them with the communities of surrounding sediment reservoirs to investigate the provenance of these storm-derived deposits. The foraminifera in the hurricane deposits resembled the foraminifera found in the surrounding marsh, rather than nearby sediment reservoirs such as tidal flats, channels, and offshore sediments. These similarities between the storm and marsh foraminifera assemblages are attributed to a mix of two processes: resilience of marsh foraminifera and rapid recolonization of these communities in the storm deposits following the passage of Hurricane Irma, and some reworking of marsh sediments into the storm deposits during the hurricane’s storm surge. The study also assesses the utility of foraminifera in identifying storm deposits, which has implications for the sensitivity of foraminifera paleostorm studies.
|
84 |
Dedolomitization and Alkali-Silica Reactions in Ohio-Sourced Dolostone AggregatesSmeltz, Jonathan Brett 08 May 2018 (has links)
No description available.
|
85 |
Handheld XRF as a proxy for onsite evaluation of unconventional targets: an investigation of the Woodford shale, Anadarko basin, OklahomaWilley, Tyler Jayne January 1900 (has links)
Master of Science / Department of Geology / Matthew Totten / The Woodford shale is recognized as an abundant source rock across Oklahoma and much of the midcontinent (Lambert, 1990), and up to 8% of the world’s hydrocarbon reserves are estimated to have been sourced by the Woodford and its equivalents (Fritz et al, 1991). The Woodford shale is far more complex than other Devonian black shales found in North America due to the presence of alternating bands of chert-like amorphous silica and silica-rich shale. Analysis of chert and its possible role in gas generation and storage in shales has been largely overlooked. The goal of this study is to determine if chert size, amounts, or polycrystallinity can be indicators of thermal maturity within the Woodford shale. Handheld XRF analysis was conducted on the whole rock samples, and a mudrock specific sodium bisulfate fusion was used to separate the non-clay fraction. SEM was performed on the resulting separates to study and observe changes in chert fabric, grain-size, and amount.
No correlations were observed to indicate that chert is an indicator of thermal maturity within the Woodford shale. Increase in chert growth and amount was also not detected within the size fractions as thermal maturity increases. Handheld XRF proved to be a good proxy for quick, onsite analysis of silica concentrations, as well as the amount of organic matter within drill core. This could be beneficial as hydraulic fracking produces best results in areas of higher silica content, and the wells with the highest organic matter have the highest potential for petroleum accumulations.
|
86 |
Reinterpretation of the Ignacio and Elbert Formations as an Incised Valley Fill Using Facies Analysis and Sequence Stratigraphy; San Juan Basin, Southwest ColoradoMaurer, Joshua Thomas 23 July 2012 (has links)
No description available.
|
87 |
Supradetachment Basin Tectonics and The Exhumation History of The Menderes Core Complex, Western Anatolia - TurkeyONER, ZEYNEP 04 May 2012 (has links)
No description available.
|
88 |
STRUCTURAL ARCHITECTURE AND TECTONIC EVOLUTION OF THE ULUKISLA SEDIMENTARY BASIN IN SOUTH-CENTRAL TURKEYEngin, Can 17 December 2013 (has links)
No description available.
|
89 |
How Unusual is Tropical Storm Irene? A Case Study of Storm Deposition in Littleville Lake, Huntington, MADunn, Catherine 12 June 2014 (has links)
No description available.
|
90 |
Holocene environmental evolution in the Yellow River DeltaZeng, Fangyu 13 November 2017 (has links)
No description available.
|
Page generated in 0.0633 seconds