• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 12
  • 11
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Facies Analysis and Paleodischarge of Rivers within a Compound Incised Valley, Cretaceous Ferron Sandstone, Utah

Kimmerle, Stephanie 06 1900 (has links)
Classification of river systems based on dimension and lithology of architectural elements is critical in determining their scale and role in ancient drainages as tributaries, distributaries, or trunk river systems. Facies boundaries associated with the zonation of the fluvio-estuarine system can be difficult to predict using standard facies and sequence stratigraphic models, particularly within broad, long-lived compound incised valley fills. These questions are addressed in an outcrop study of incised valleys in the Turonian Ferron Sandstone Member of the Western Interior Seaway, southern Utah. Field data includes 8 measured sections containing detailed lithological, ichnological, paleocurrent, and architectural data, and 3 high resolution gigapan photomosaics of opposing outcrop faces oriented oblique to depositional dip. The compound valley records multiple episodes of cut and fill, with three nested valleys, each containing multiple channel stories. An upward progression from single thread meandering fluvial style, indicated by large scale laterally accreting point bar deposits, to more freely avulsing rivers in upper stories is documented. Lithological analysis of the oldest valley shows grain size distributions ranging from medium lower sandstone at the valley base to fine lower sandstone towards the top, and is characterized by amalgamated macroform deposits with dune scale crossbedding and abundant mud rip up clasts throughout. The second shows variable estuarine laterally accreting point bars, which coarsen away from the valley margin. The youngest valley is dominated by fining upward successions passing from medium lower dune scale cross bedded sandstone at the base with few mud clasts, to rippled very fine upper sandstone and interfingered floodplain shale deposits. Tidal influence is documented; suggesting that rivers were positioned basinward of the paleo backwater length, and estuarine facies seen in V2 suggests they are within the bayline. These rivers are among the largest documented in the Ferron and show that fluvial style and scale changes regionally within this large valley system. / Thesis / Master of Science (MSc)
2

Facies Analysis and Depositional Environments of the Saints & Sinners Quarry in the Nugget Sandstone of Northeastern Utah

Shumway, Jesse Dean 01 December 2016 (has links)
The Saints & Sinners Quarry preserves the only known vertebrate body fossils in the Nugget Sandstone and the most diverse fauna known from the Nugget-Navajo-Aztec erg system. The fauna includes eight genera and >18,000 bone and bone fragments assignable to >76 individuals, including theropods, sphenosuchians, sphenodontians, drepanosaurs, procolophonids, and a dimorphodontid pterosaur. Cycadeoid fronds are the only plant fossils. There are two depositional environments at the site – dune and interdune, each consisting of two or more faces. The dune facies are (1) Trough Cross-Stratified Sandstone (TCS) representing dry dunes, and (2) Massive and Bioturbated Dunes (MBD) representing bioturbated, damp dunes. The interdune facies are (1) Wavy Sandstone (WSS) representing wet and damp flats with biofilms and tridactyl tracks, (2) Green Clays and Silts (GCS) representing quiet lacustrine waters, (3) Planar Laminated Sandstone (PLS) representing lacustrine dust and sand storm deposits which grade laterally into (4) Massive Bone Bed (MBB) shoreline deposits. The vertical and lateral relationships of the dune and interdune facies suggests that an interdune flat developed (WSS facies) likely by deflation of dunes down to, or near to, the water table. As the water table rose, a shallow lake developed (GCS facies) and trapped wind-blown sediment during sand storms (PLS Facies). The taxonomically diverse vertebrate fauna suggest a mass die-off occurred, likely due to drought. The carcasses and bones were buried by three distinct depositional events, each a bone bed (MBB facies) - separated by very thin clays (GCS facies). Thereafter the water table dropped resulting in several cm-scale sandstone beds with tridactyl tracks (WSS facies). Then migrating dunes buried the interdune flat. These dunes hosted burrowing invertebrates for a moderate time resulting in the destruction of nearly all primary sedimentary structures (MBD facies). Ultimately, as the area dried further, more dunes migrated over these bioturbated surfaces and the area returned to dune field conditions (TCS facies). The Saints & Sinners site indicates that a previously unrecognized, remarkably diverse vertebrate fauna thrived in wet interdunes of western North America's Late Triassic erg system. A massive-die-off, likely due to a drought, provided a wealth of carcasses and their bones. The dynamic shoreline representing the interface of dunes and standing water provided favorable conditions for rapid burial of small carcasses and the disarticulated bones of larger individuals.
3

Detailed Thin-bedded Facies Analysis of Mancos C in the Upper Mancos Shale, New Mexico

Genovese, Cristina 11 1900 (has links)
Fine grained sediments were common in epicontinental seas, with shallow slopes, such as the Cretaceous Western Interior Seaway. However, proposed mechanisms for offshore mud transport, such as turbidity currents, tempestites, and hyperpycnal flows, require significant slopes. A core from the Upper Mancos Shale, Mancos C, located in the San Juan Basin of New Mexico was analysed to determine the dominant transport processes bringing sediment offshore. A detailed facies analysis was conducted, over 54 m of slabbed core, using sedimentological data, such as grain size, type of sedimentary structures, bed thickness, lithology, clay content, fossils, ichnofacies, and degree of bioturbation. The facies observed in the core show that multiple processes, including ignitive turbidity currents, hypopycnal and hyperpycnal flows, and tempestites, were responsible for the deposition of the Mancos C core. The resuspension of mud on the inner shelf by storm waves also played a key role in moving mud further offshore. Tidal influence within the Mancos C was relatively small. / Thesis / Master of Science (MSc)
4

High-resolution facies analysis and regional correlation of the Upper Cretaceous Juana Lopez Member of the Mancos Shale, New Mexico

Wiercigroch, Monica January 2018 (has links)
Fine-grained clastic sediments make up the gross lithology in interior basins of ancient epicontinental seas, such as the Cretaceous Western Interior Seaway. This study provides a high-resolution thin-bedded facies analysis and regional correlations to determine how the heterolithic units of the Juana Lopez Member of the Mancos Shale were transported and deposited in the San Juan Basin. Data for this study was obtained from outcrop observations in eleven measured sections, spanning a distance of 115 kilometers. Eleven facies are observed, four sequences and eleven parasequence sets are identified. A depositional model is determined through the high-resolution facies analysis, which suggests deposition on a proximal to distal mudbelt through multiple processes, including turbidity currents, hypopycnal plumes, wave enhanced sediment gravity flows (WESGFs), storm surges, tides and oceanic currents. Overall, the Juana Lopez is dominated by upward-shoaling parasequence sets, with an increasing number and thickness of sandstone dominated bedsets, suggesting regressive sedimentation with distal expressions of transgression found in two parasequence sets. The source of sediment is determined through 520 paleocurrent measurements and plaeogeographic data, and is determined to be transported by along-shelf currents, dominantly from proximal NE clastic wedges. / Thesis / Master of Science (MSc)
5

High-resolution Sequence Stratigraphy, Facies Analysis, and Sediment Quantification of the Cretaceous Gallup System, New Mexico, U.S.A.

Lin, Wen January 2018 (has links)
The quantification of sediment budget in a well-defined ancient source-to-sink (S2S) system is vital to understand Earth history and basin evolution. Fulcrum analysis is an effective approach to estimate sediment volumes of depositional systems, given total mass balance throughout source areas to basins. The key to this approach is to quantify sediment in a closed S2S system with time controls. We analyzed Allomember E of the Cretaceous Dunvegan Alloformation in the Western Canadian Sedimentary Basin to test this sediment estimation approach. The results indicate that the sediment transported by the trunk-river generically matches the sediment estimated to be deposited in the basin. The upper-range estimate may suggest mud dispersal southward by geostrophic currents. Deciphering the relationships between traditional lithostratigraphy and sequence stratigraphy is the key to correctly understanding time-stratigraphic relationships. High-resolution sequence stratigraphic analysis of the Cretaceous Gallup system documents the high-frequency depositional cyclicity using detailed facies analysis in extensively exposed outcrops in northwestern New Mexico, US. We identified thirteen stratigraphic sequences, consisting of twenty-six parasequence and sixty-one parasequences. Shoreline trajectories are evaluated based on the geometry of the parasequences. The results show the previously identified sandstone tongues are equivalent to high-frequency sequence sets. The depositional duration estimates of respective sequence stratigraphic units, associated with the estimated changes in relative sea level, imply that Milankovitch-cycle-dominated glacio-eustasy may be the predominant control on the high-frequency sequence stratigraphy. Shoreline processes are more dynamic and complicated with mixed-energy dominance. The re-evaluation of the depositional environments of the Gallup system and the reconstructions of the paleogeography with temporal controls help to examine the depositional evolution in space and time. Paleogeographic reconstructions at parasequence scales allow for the documentation of the process-based lateral facies variations and the depositional evolution. The distinction between different wave-dominated facies associations is proposed based on this process-based facies analysis. / Dissertation / Doctor of Philosophy (PhD)
6

A Geomorphological Assessment of Armored Deposits Along the Southern Flanks of Grand Mesa, CO, USA

Brunk, Timothy J. 2010 May 1900 (has links)
A series of deposits, located along the southern flanks of Grand Mesa, Colorado, and extending to the south, are problematic, and the processes related to emplacement are not understood. The overall area is dominated by two landform systems, Grand Mesa, which supported a Pleistocene ice cap, and the North Fork Gunnison River drainage. Thus, one has to ask: Are these deposits the result of the melting of the ice cap or are they fluvial terraces associated with the evolution of the ancestral Gunnison River? The goal of this research was to map the areal extent of the deposits and to interpret the formation and climatic significance in understanding the evolution of the Pleistocene landscape in the region. An extensive exposure, parallel to State Highway 65 near Cory Grade, was used for detailed description and sampling. Three additional exposures, ~10 to 20 km (~6 to 12 mi) were used to extend the areal extent of sampling. The study area was mapped using aerial photography and traditional field mapping aided by GPS. From the field work, a detailed stratigraphic column, including lithology and erodability, was constructed. Vertical exposures of the deposits were described, mapped, and recorded in the field and using detailed photo mosaics. Samples were collected from each stratum of the deposits for grain-size, shape, and sorting analyses. Five distinct depositional facies were identified. Sieve analysis on collected samples shows that four distinct grain-sizes occur in the outcrops; coarse sand, very-coarse sand, granule, and pebble and boulder. Mean grain-sizes range from 0.0722 to 0.9617, -0.0948 to -0.9456, -1.0566 to -1.9053, and -2.0050 to -3.4643, respectively. Glacio-fluvial depositional environments were identified and supported with observations of sedimentary structures and clast composition. Two major environments of deposition are recorded in the deposits; fluvial deposits from glacial outburst floods, and debris flow deposits. Imbrication of clasts in the strata suggests the flow came from the direction of Grand Mesa to the north. Facies and subsequent sequences were constructed to portray evidence that supports the glacio-fluvial mode of deposition.
7

Geochemické studium jezerních sedimentů v oblasti zaniklého Komořanského jezera / Geochemical study of the lacustrine deposits of the extinct Komořany Lake

Valentová, Daniela January 2011 (has links)
Komořany Lake, regarded as one of the most important sites of the Czechoslovak Quaternary, was situated at the southern foot of the Krušné hory Mountains, northwest from the Starý Most town, between the villages of Souš, Komořany, Ervěnice, Dřínov, Albrechtice, Černice and Dolní Jiřetín. Due to its size, Komořany Lake belonged to the largest bodies of water in the Czechoslovak Republic (25 km2 ) and due to the quantity of organogenic sediments get into the focus of paleoecologists. Gyttji sediments which occupy comparatively thick position in the lake infilling, formed a continuous record from the Last Glacial period to the Subatlantic period and up to now have been processed mainly from the paleoecological point of view. In this work the organogenic sediments are studied from the sedimentary record using modern geochemical methods (TOC/TN and d13C) for the first time in Komořany Lake history. The work was based on profiles (PK-1-C, PK-1-Ch, PK-1-I and PK-1-W) which were taken between 1977-1983 before a complete exploitation of Komořany Lake sediments as a result of coal mining in the Most Basin in the 1980's.
8

Provenance and depositional environments of early cretaceous sediments in the Bredasdorp Sub-basin, offshore South Africa: an integrated approach

Hendricks, Mogammad Yaaseen January 2020 (has links)
>Magister Scientiae - MSc / Southern offshore basins of South Africa are well known as potential provinces of hydrocarbon exploration and production. The complex nature of the Bredasdorp sub-basin’s syn-rift architecture (transform fault system) can have adverse effects on reservoir distribution due to periodic local and regional uplift of horsts and grabens. This present investigation focusses on an integrated approach of the 1AT1-V horizon or early Cretaceous sediments in the Bredasdorp sub-basin to identify the depositional environment and provenance of these sediments as well as their role in regionally complex compositional heterogeneities associated with the late stage rifting of Gondwana break-up. An integrated seismic, sedimentological (including petrography and geochemistry) and ichnologic analysis of the 1AT1-V horizon sediments showed an overall lower regressive element complex assemblage set and an upper transgressive element complex assemblage set that occurred as a >120m thick succession. The analysis identified a mixed-energy deltaic succession followed by an estuarine succession. The 1AT1-V interval (late syn-rift) consisted of nine sedimentary facies associations (and associated petrofacies) on a dipslope setting with variations occurring along the strike and the downdip depositional slope areas. Two overall sequences were identified as a lower regressive and upper transgressive sequence (Element complex assemblage sets). The regressive sequence consisted of middle to distal delta front lobe fringes, hyperpycnal event beds (sourced from basement highs), offshore migrating tidal bars (and associated inter-bar regions), distal mouth bars, terminal distributary channels (and associated inter-terminal distributary regions). The distal delta plain to proximal delta front consisted of interdistributary bays, distributary channels, crevasse splay sub-deltas, mouth bars, tidal flats and offshore embayments. In the laterally isolated depocenter, these deposits also consisted of basement high slopes with upliftment of the basement highs leading to proximal/central embayment to regressive shoreface/foreshore environments. These sequences consisted generally of low diversity and intensities (impoverished abundances) of trace fossils. The paleoclimate inference from this sequence indicates a humid climate with intermediate degrees of weathering intensities (possibly fluctuating arid-humid conditions). The transgressive sequence consisted of estuarine sedimentation with the occurrence of tidal sand ridges and compound dune fields, embayment facies and tidal bars. These sequences consisted of relatively higher ichnodiversities and intensities than their relative regressive sequences. The paleoclimate inference during these times consisted of more arid to semi-arid settings with low degrees of weathering in the source terrain. Local tectonic upliftment and subsidence, with exposed basement highs, gave rise to differential process regimes (tidal, wave and fluvial) and hence depositional facies in the diachronous updip/downdip areas (spatial) and within-stratigraphic (temporal) variations. There are several modern analogues that are similar to the 1AT1-V horizon sequence and they are the Mahakam, Ganges-Brahmaputra, Po, Burdekin deltaic and Satpara lake environments Compaction and dissolution diagenetic features as well as transportation were responsible for the major compositional heterogeneities concerning the reservoir quality and distribution. Proximal and distal sources were identified with first cycle and polycyclic sediments being deposited in the northern and southern part of the basin during the late stages of rifting in the Bredasdorp sub-basin. The provenance lithology has been identified as recycled sedimentary rocks (and their meta-equivalents) with an ultimate source terrain that was largely felsic in nature (Cape granite suite). The northern part of the studied section is suggested to have received sediments from the main metasedimentary rocks of the Cape fold belt (including the Table Mountain Group and Bokkeveld Group) whereas the southern sections received more sediments from the basement highs (recycled Malmesbury Group (and Pre-Cape sediments) and Cape granite suite), which is further supported by seismic data. Provenance analysis revealed that the Cape Fold belt (most recent collision) was possibly a provenance terrain but overprinting of several collisions are also acknowledged. The tectonic setting was envisaged to be of a rifted margin during the break-up of Gondwana. This compositional heterogeneity due to facies and provenance-related terrains had major consequences to the reservoir quality and distribution from the northern part to the southern part of the studied section
9

Facies Analysis and Reservoir Characterization of Subtidal, Intertidal, and Supratidal Zones of the Mudstone-rich Entrada Sandstone, South-Central Utah

Hicks, Tanner Charles 04 March 2011 (has links) (PDF)
Understanding thickness variation and facies transitions in the mudstone-rich part of the Upper Middle Jurassic (Callovian) Entrada Sandstone depositional system is critical for constraining the paleogeography and evaluating the economic potential of Utah's Entrada Sandstone. Facies of the Entrada Sandstone in south-central Utah are dominated by mudstone-rich intertidal facies that were widespread within the Jurassic seaway. Intertidal deposits interfinger basinward with subtidal ooid-bearing shoals and bars, and landward supratidal sabkha, and erg-margin eolian deposits. Three sections were measured to improve understanding of the lateral and vertical facies transitions. Variations in thickness indicate the rate of developing accommodation space was high along the southwestern shoreline and relatively low along the northeastern shoreline during Callovian time. Although accommodation space was highest in the west, sediment supply from the west kept pace with, and eventually outpaced subsidence. In the east, sediment supply was significant but at one time was outpaced by subsidence, creating a complete range of facies, from subtidal to supratidal deposits. Along this eastern shoreline, erg-margin coastal dunes associated with the larger erg to the east eventually prograded westward. The variation in subsidence, sediment supply, and sediment source makes sequence stratigraphic correlation difficult. Reservoir-quality sandstones are associated with muddy sections of the Entrada Sandstone within the San Rafael Swell. Porosity and permeability of the facies in this area indicate excellent reservoir potential in three of eight facies that were studied. Porosities of these potential reservoirs ranged from 11-22%, with permeabilities ranging from 44-430md. These high quality reservoir facies are surrounded by muddy, low reservoir-quality rocks, creating conditions amenable to the development of stratigraphic hydrocarbon traps. Based on further study and a modern analog at the north of the Gulf of California, Hicks and others' (2010) depositional model for the Entrada Sandstone of south-central Utah has been modified to include newly interpreted facies. This improved depositional model may have predictive power in exploring for stratigraphic and combination traps within the Entrada system of Utah and analogous depositional systems throughout the world.
10

Insights Into the Stratigraphic Evolution of the Early Pennsylvanian Pocahontas Basin, Virginia

Grimm, Ryan P. 05 January 2011 (has links)
Early Pennsylvanian, coal-bearing, siliciclastic strata of the Breathitt Group within the Pocahontas Basin, southwestern Virginia, define a southeasterly thickening clastic wedge deposited in continental to marginal marine environments influenced by recurring, high-magnitude relative sea-level fluctuations and low-frequency changes in tectonic loading. A robust dataset of >1200 well logs, cores and numerous outcrops allowed a unique review of the Central Appalachian lithologic record during both the Late Paleozoic Ice Age and onset of the Alleghanian Orogeny. The tropical depositional landscape produced stacked deposits of braided-fluvial channels, broad alluvial plains, tidally-influenced estuaries and small deltas. Trends in facies associations allowed development of a high-resolution sequence stratigraphic architecture based on regional flooding surfaces and bounding discontinuities. Analysis of vertical stacking patterns of lithofacies on regional cross-sections identified 15 widespread, unconformity-bounded depositional sequences with an average duration of ~80 kyr based on available geochronology. Glacioeustatic control on stratigraphic architecture is supported by corresponding sequence duration within the short-eccentricity periodicity of the Milankovitch band, as well as the magnitude and extent of rapid facies shifts, suggesting that far-a-field variations in overall Gondwanan ice-sheet size and volume impacted base-level changes in the tropical basin. The progressive increase in magnitude of transgressions, as indicated by brackish-marine ichnofacies and other faunal indicators within regional high-frequency transgressive system tracts, indicate extrabasinal trends in ice-volume and eustasy. High-frequency eustatic sequences are nested within four asymmetric composite-sequences, attributed to low-frequency variations in tectonic accommodation. Evidence for tectonic forcing on foreland-basin accommodation is based on abrupt facies shifts, angular stratal terminations and wedge-shaped composite-sequence geometries. Spatial and temporal trends in facies associations within composite-sequences reveal episodic variation in tectonic loading overprinted by recurring high-frequency eustatic events. Petrology and detrital-zircon geochronology indicates that sediment was derived from low-grade metamorphic Grenvillian-Avalonian terranes and recycling of older Paleozoic sedimentary rocks uplifted as part of the Alleghanian orogen towards the southeast and, in part, from the Archean Superior Province to the north. Applications of the observed facies distribution and petrophysics of these coal-bearing sedimentary rocks indicate numerous confining intervals within regional mudstones overlying coalbeds, suggesting the potential for beneficial geological storage of CO2 through enhanced-coal-bed-methane recovery. / Ph. D.

Page generated in 0.0356 seconds