• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A multidisciplinary approach to reservoir characterization of the coastal Entrada erg-margin gas play, Utah

Monn, Will D. 16 March 2006 (has links)
World-class outcrops of an outermost erg-margin can be observed within the Middle Jurassic Entrada Sandstone near Capitol Reef National Park, Utah. These erg-margin deposits contain isolated reservoir quality sandstone bodies that transition into a muddy tidal flat facies. These high quality reservoirs are dominated by eolian-influenced facies interbedded with sandy interdune facies. They are sealed vertically by muddy and silty facies of associated tidal flat deposits that act as excellent stratigraphic traps in the subsurface. A variety of approaches were used to characterize these Entrada erg-margin reservoirs including: annotated panoramas of outcrops, measured sections, scintillometer measurements of field sections, facies analysis, 2D high-resolution shallow seismic surveys, porosity and permeability analysis, and sedimentary petrography. Logs from the North Hill Creek/Flat Rock gas field were analyzed and correlated to the outcrop study. Eolian dune facies, along with an upper ripple laminated facies representing interdune deposits, display the highest porosities and permeabilities and are volumetrically the most important facies of the reservoir quality sandstones. Baffles and possible barriers within the sandstone bodies are limited to quartz filled fractures, deformation bands, silty and muddy interdune facies, and first order bounding surfaces. Many of the sandstone bodies within the outcrop belt are genetically related and in communication with each other. This relationship results from dune complex migration to the south and up section over time. Stratigraphic climb can potentially be imaged seismically and may serve as a key indicator of eolian dune complexes in the subsurface. The volumetric size of one of these complexes is estimated around 470 million cubic feet. Smaller outcrop sandstone bodies were often found to be isolated from the large dune complexes and ranged down to 1 million cubic feet in size.
2

A multidisciplinary approach to reservoir characterization of the coastal Entrada erg-margin gas play, Utah /

Monn, Will D. January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geology, 2006. / Includes bibliographical references (p. 27-33).
3

Analysis of Small Faults in a Sandstone Reservoir Analog, San Rafael Desert: Implications for Fluid Flow at the Reservoir-Scale

Clayton, Leslie Noël 01 May 2019 (has links)
We examined small-displacement faults in the Jurassic Entrada Sandstone adjacent to the Iron Wash Fault, central Utah east of the San Rafael Swell, in order to describe the nature and timing of past fluid movement and deformation in the Entrada Sandstone. Using field studies, microscopy, and X-ray diffraction analysis, we identified mineralized fractures and cementation features in association with deformation bands and fractures at the interface of the Earthy and Slick Rock Members of the Entrada Sandstone. Where the faults cross the Earthy-Slick Rock Member interface, deformation band faults in the Slick Rock Member become opening-mode fractures in the Earthy Member. These fractures are frequently mineralized with calcite, and goethite pseudomorphs after pyrite, providing evidence of at least two phases of fluid flow from the Entrada reservoir into the caprock in connection with deformation bands. We also observe mineralized fractures, poikilotopic cementation, and spherical to elongate concretions on and within deformation band fins in the Slick Rock Member. These features indicate the presence and movement of fluids parallel to and between deformation band fins. At some sites, deformation band faults and fractures cross and offset the interface; at others, they are present in both units, but deformation band faults do not cross the interface and fractures are not directly connected to any bands. Mineralized fractures are only found at breached-interface sites; evidence for fluid flow in the Slick Rock Member is only found in deformation band fins. Interface crossing and fracture formation is not related to proximity to the Iron Wash Fault. We propose that mesoscale faults can act as seal bypass systems and allow fluid leakage from reservoir rock into overlying less permeable rocks. Deformation bands act as both conduits for and barriers to flow, seen most clearly in deformation band fins where iron staining and mineralization is constrained between sets of bands within the fin. In CO2 or wastewater injection scenarios, interface deformation may prevent successful fluid trapping and cause re-emission of injected fluids.
4

Seismic and well log attribute analysis of the Jurassic Entrada/Curtis interval within the North Hill Creek 3D seismic survey, Uinta Basin, Utah : case history /

O'Neal, Ryan J., January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geological Sciences, 2007. / Includes bibliographical references (p. 63-68).
5

Facies Analysis and Reservoir Characterization of Subtidal, Intertidal, and Supratidal Zones of the Mudstone-rich Entrada Sandstone, South-Central Utah

Hicks, Tanner Charles 04 March 2011 (has links) (PDF)
Understanding thickness variation and facies transitions in the mudstone-rich part of the Upper Middle Jurassic (Callovian) Entrada Sandstone depositional system is critical for constraining the paleogeography and evaluating the economic potential of Utah's Entrada Sandstone. Facies of the Entrada Sandstone in south-central Utah are dominated by mudstone-rich intertidal facies that were widespread within the Jurassic seaway. Intertidal deposits interfinger basinward with subtidal ooid-bearing shoals and bars, and landward supratidal sabkha, and erg-margin eolian deposits. Three sections were measured to improve understanding of the lateral and vertical facies transitions. Variations in thickness indicate the rate of developing accommodation space was high along the southwestern shoreline and relatively low along the northeastern shoreline during Callovian time. Although accommodation space was highest in the west, sediment supply from the west kept pace with, and eventually outpaced subsidence. In the east, sediment supply was significant but at one time was outpaced by subsidence, creating a complete range of facies, from subtidal to supratidal deposits. Along this eastern shoreline, erg-margin coastal dunes associated with the larger erg to the east eventually prograded westward. The variation in subsidence, sediment supply, and sediment source makes sequence stratigraphic correlation difficult. Reservoir-quality sandstones are associated with muddy sections of the Entrada Sandstone within the San Rafael Swell. Porosity and permeability of the facies in this area indicate excellent reservoir potential in three of eight facies that were studied. Porosities of these potential reservoirs ranged from 11-22%, with permeabilities ranging from 44-430md. These high quality reservoir facies are surrounded by muddy, low reservoir-quality rocks, creating conditions amenable to the development of stratigraphic hydrocarbon traps. Based on further study and a modern analog at the north of the Gulf of California, Hicks and others' (2010) depositional model for the Entrada Sandstone of south-central Utah has been modified to include newly interpreted facies. This improved depositional model may have predictive power in exploring for stratigraphic and combination traps within the Entrada system of Utah and analogous depositional systems throughout the world.
6

The First 40Ar/39Ar Ages and Tephrochronologic Framework for the Jurassic Entrada Sandstone in central Utah

Dossett, Toby S. 01 May 2014 (has links) (PDF)
The first 40Ar/39Ar ages of the Middle Jurassic Entrada Sandstone were derived from tephra beds found in central Utah. Eight air fall ash beds in the Entrada Sandstone, with 40Ar/39Ar biotite ages ranging from 168.1 ± 0.2 to 160.8 ± 0.2 Ma, help to establish the age of Entrada deposition. They were also used to create the first chronostratigraphic divisions within the mudstone-dominated Entrada Sandstone. Statistical cluster analysis of chemical data from electron microprobe analyses of phenocrysts were used as a second line of evidence to test absolute age and stratigraphic correlations. The first direct correlations of two distinct air fall ash beds within Jurassic rocks were correlated using three criteria: (1) stratigraphic position, (2) absolute ages, and (3) mineral chemistry. These tephra beds were identified and correlated across significant lateral distances (~40 km) of the San Rafael Swell in central Utah, and one can be correlated farther southwest to Cannonville, Utah (~160 km) using absolute age relationships. This latter tephra bed allows for stratigraphic correlation across significant facies and thickness changes thereby establishing a regional framework that future studies can use to make more accurate and precise litho- and sequence stratigraphic correlations. Absolute ages from a tephra bed ~20 m below the J-3 unconformity provide a lower age boundary for formation of the J-3 surface. Mega- and microfossil assemblages in the overlying Curtis Formation together with the radiometric ages reported in this study indicate that the age of the Callovian-Oxfordian boundary in the 2004 geologic time scale (161.2 ± 4.0 Ma) is more correct than the current boundary age (163.5 ± 1.1 Ma) in the 2012 geologic time scale.
7

Sedimentology and Stratigraphy of the Middle Jurassic Preuss Sandstonein Northern Utah and Eastern Idaho

Cook, Preston Scott 01 June 2016 (has links)
The purpose of this study is to analyze the sedimentology and stratigraphy of the Middle Jurassic Preuss Sandstone and re-evaluate past sedimentological interpretations. The Preuss is located in northern Utah, western Wyoming and eastern Idaho and is stratigraphically equivalent to the Entrada Sandstone, which is Callovian in age (Dossett et al., 2014). This study is the first attempt at 1) a sequence stratigraphic framework, 2) a petroleum system analysis and 3) an extraterrestrial analog study for the Preuss. This study frames the Preuss within three broad facies groups: marine, coastal and terrestrial. The marine group includes the open marine and restricted marine facies with associated subfacies, the coastal group includes coastal sabkha and associated subfacies, and the terrestrial group includes alluvial, inland sabkha and eolian facies with associated subfacies. Three sections in northern Utah and one section in eastern Idaho compromise the focus of this study. The three Utah sections were measured and described, and samples were collected from two Utah sections and the Idaho section. The Preuss Sandstone was deposited in an asymmetrical retroarc basin, consequently the Preuss thickens from the east towards west-central Utah and the Jurassic Elko highlands. The deposits are mostly terrestrial, which is in accord with recent sedimentological interpretations, but at odds with the old paradigm, which postulates that the Entrada and Preuss were largely tidal in origin. There are marine transgressions within the trough of the retroarc basin, and the transgressions affect terrestrial sedimentary patterns. During marine incurstions, alluvium shed off the highlands is confined west of the seaway, and does not prograde east of the trough until all the available accommodation is filled. The Preuss was deposited during a complete third-order sequence-stratigraphic cycle that lies within the Lower Zuni II second-order lowstand. The Preuss Sandstone can be used as an outcrop analog for ancient and modern environments both here on Earth and on other planetary bodies. The petroliferous Norphlet Formation along the U.S. Gulf Coast was deposited in an environment very similar to the Preuss, but the Waltherian succession of facies might be slightly different. Likewise, the facies present in the Preuss are analogous to modern arid environments, such as the Persian Gulf. Furthermore, the alluvial, sabkha, eolian and shallow marine facies of the Preuss are highly similar to facies observed in ancient Martian environments and modern environments on Saturn's moon, Titan.
8

Redbeds of the Upper Entrada Sandstone, Central Utah: Facies Analysis and Regional Implications of Interfingered Sabkha and Fluvial Terminal Splay Sediments

Valenza, Jeffery Michael 01 December 2016 (has links)
First distinguished from other sedimentary successions in 1928, the Entrada Sandstone has been the subject of numerous studies. The western extent of the formation was initially described as laterally continuous "earthy" red beds, and categorized as sub- to supratidal marine-influenced sediments. Recent workers have reexamined the sedimentary facies hosted by the Entrada Sandstone, and findings suggest purely terrestrial depositional environments. Several outcrops of the upper Entrada hosted peculiar sedimentary features, including undulatory and convex-upward, parallel-laminated bedforms, reminiscent of hummocky cross-stratification- unexpected features in a terrestrial environment. The purpose of this study was to collect detailed outcrop measurements of these and other facies present in the upper Entrada Sandstone and to place them in context within a regional sedimentary system. Measured section data was analyzed and divided into sixteen primary facies based on textures, features, bedforms, grain size, and other characteristics. Surfaces were also noted and described. Each facies and surface was recognized to have developed under specific depositional or flow conditions, including eolian, paleosol, and fluvial subcritical, critical, supercritical, and waning flow. Primary facies were grouped into observed and interpreted facies associations. A depositional environment was then assigned to each facies association. These environments included sabkha, overbank splay/paleosol, distal terminal splay, and hyper-distal terminal splay. Ancient analogs were found in the Blomidon, Skagerrak, and Ormskirk Formations, which have been described as dryland fluvial systems that terminated onto saline mudflats (sabkhas). Modern analogs were found in the central Australian continent, in the form of fluvial terminal splays in ephemeral Lakes Eyre and Frome. The sedimentary system of the upper Entrada Sandstone of the San Rafael Swell is interpreted as an interfingering fluvial terminal splay and inland sabkha system. These are marked by a wide array of sedimentary structures representing stark extremes, from hyperarid to flash flooding conditions. During arid conditions, the only source of water was evaporative pumping of a high water table. During the rare occasions when surface water flowed through the system, flash flooding events produced the highest stage of supercritical flow described in geological literature. The succession of these facies reveals allogenic and autogenic processes active at the time of deposition, including episodes of tectonic uplift and fluvial avulsions.
9

Facies Analysis, Sequence Stratigraphy and Paleogeography of the Middle Jurassic (Callovian) Entrada Sandstone: Traps, Tectonics, and Analog

Jennings, George R., III 05 June 2014 (has links) (PDF)
The late Middle Jurassic (Callovian) Entrada Sandstone has been divided into two general facies associations consisting primarily of eolian sandstones in eastern Utah and "muddy" redbeds in central Utah. Sedimentary structures within the redbed portion are explained by the interfingering of inland sabkha, alluvial, and eolian depositional systems. A complete succession from the most basinward facies to the most terrestrial facies in the Entrada Sandstone consists of inland sabkha facies overlain by either alluvial or eolian facies. Where both alluvial and eolian facies interfinger, alluvial facies overlain by eolian facies is considered a normal succession. Sequence boundaries, often identified by more basinward facies overlying more landward facies, are observed in the Entrada Sandstone and are extrapolated for the first time across much of Utah, including both the eolian-dominated and redbed-dominated areas. Using these sequence boundaries as well as recent tephrochronologic studies, three time correlative surfaces have been identified in the Entrada. Based on the facies interpretations at each surface, five paleogeographic reconstructions and five isopach maps have been created, illustrating two major intervals of erg expansion and the location of the Jurassic retroarc foreland basin's potential forebulge. Eolian (erg-margin) sandstones pinch-out into muddy redbeds creating combination traps, as evidenced by dead oil (tar) and bleached eolian sandstone bodies within the Entrada. The Entrada Sandstone is a world-class analog for similar systems, such as the Gulf of Mexico's Norphlet Sandstone, where eolian facies grade into muddy redbed facies.

Page generated in 0.1245 seconds