Spelling suggestions: "subject:"sedimentary basis"" "subject:"sedimentary basic""
41 |
Mathematical modelling of compaction and diagenesis in sedimentary basinsYang, Xin-She January 1997 (has links)
Sedimentary basins form when water-borne sediments in shallow seas are deposited over periods of millions of years. Sediments compact under their own weight, causing the expulsion of pore water. If this expulsion is sufficiently slow, overpressuring can result, a phenomenon which is of concern in oil drilling operations. The competition between pore water expulsion and burial is complicated by a variety of factors, which include diagenesis (clay dewatering), and different modes (elastic or viscous) of rheological deformation via compaction and pressure solution, which may also include hysteresis in the constitutive behaviours. This thesis is concerned with models which can describe the evolution of porosity and pore pressure in sedimentary basins. We begin by analysing the simplest case of poroelastic compaction which in a 1-D case results in a nonlinear diffusion equation, controlled principally by a dimensionless parameter lambda, which is the ratio of the hydraulic conductivity to the sedimentation rate. We provide analytic and numerical results for both large and small lambda in Chapter 3 and Chapter 4. We then put a more realistic rheological relation with hysteresis into the model and investigate its effects during loading and unloading in Chapter 5. A discontinuous porosity profile may occur if the unloaded system is reloaded. We pursue the model further by considering diagenesis as a dehydration model in Chapter 6, then we extend it to a more realistic dissolution-precipitation reaction-transport model in Chapter 7 by including most of the known physics and chemistry derived from experimental studies. We eventually derive a viscous compaction model for pressure solution in sedimentary basins in Chapter 8, and show how the model suggests radically different behaviours in the distinct limits of slow and fast compaction. When lambda << 1, compaction is limited to a basal boundary layer. When lambda >> 1, compaction occurs throughout the basin, and the basic equilibrium solution near the surface is a near parabolic profile of porosity. But it is only valid to a finite depth where the permeability has decreased sufficiently, and a transition occurs, marking a switch from a normally pressured environment to one with high pore pressures.
|
42 |
Simulação numérica tridimensional de processos de deformação em bacias sedimentares / Tridimensional numerical simulation of deformation processes in sedimentary basinsBrüch, André Reinert January 2016 (has links)
O desenvolvimento de modelos teóricos e computacionais para simular a história de deformação e reconstruir o estado termoporomecânico de bacias sedimentares é de grande interesse da indústria do petróleo. A compactação dos sedimentos, o escoamento dos fluidos e o fluxo térmico são processos de grande importância que ocorrem ao longo da diagênese. Fenômenos puramente mecânicos prevalecem nas camadas superiores da bacia associados à expulsão do fluido e ao rearranjo das partículas sólidas, enquanto a compactação químico-mecânica resultante dos processos de pressão-solução intergranular é dominante nas camadas mais profundas, onde as tensões e temperaturas são maiores. Estes processos de deformação podem ser significativamente afetados pela sua evolução térmica, já que o calor altera a viscosidade dos fluidos e as propriedades físico-químicas dos minerais. O objetivo deste trabalho é desenvolver um modelo constitutivo para o material poroso saturado no contexto da termoporomecânica finita e uma ferramenta computacional com uma interface de multiprocessamento em memória compartilhada baseada no método dos elementos finitos para representar os processos de formação e compactação gravitacional de uma bacia sedimentar. As deformações mecânicas e químico-mecânicas são representadas pela plasticidade e viscoplasticidade, respectivamente. Uma característica fundamental do modelo está relacionada à mudança das propriedades do material poroso em função da variação de temperatura e da evolução de caráter irreversível da sua microestrutura. Simulações numéricas realizadas em condições oedométricas permitem investigar a evolução do modelo constitutivo e do comportamento global da bacia, onde é possível verificar o caráter interdependente dos diferentes processos termoporomecânicos envolvidos. A capacidade da ferramenta computacional de representar problemas tridimensionais complexos é demonstrada a partir de uma história de deposição sedimentar associada a camadas estratigráficas com espessuras variáveis. / Development of theoretical and numerical models to simulate the deformation history and rebuild the thermoporomechanical state of sedimentary basins is of great interest for the oil industry. Compaction of sediments, fluid and thermal flows are fundamental coupled processes during diagenesis. Purely mechanical phenomena prevail in the upper layers involving pore fluid expulsion and rearrangement of solid particles, while chemo-mechanical compaction resulting from Intergranular Pressure-Solution (IPS) dominates for deeper burial as stress and temperature increase. The thermal evolution of the basin may substantially affect both processes as heat modifies the viscosity of fluids and physicochemical properties of minerals. The aim of the present contribution is to provide a constitutive model for saturated porous media in the context of finite thermoporomechanics and a numerical tool with a shared memory multiprocessing interface based on the finite element method to deal with depositional phase and gravitational compaction modeling of sedimentary basins. Purely mechanical and chemo-mechanical deformations are respectively modeled by means of plasticity and viscoplasticity. A key feature of the model is related to the evolution of the sediment material properties associated with temperature and large irreversible porosity changes. The evolution of the constitutive model and the overall behavior of the basin are provided by numerical simulations performed under oedometric conditions. The coupled nature of the thermoporomechanical processes is investigated. A depositional history with varying stratigraphic layers is proposed to demonstrate the ability of the numerical tool to model complex 3D problems.
|
43 |
Etats de surface et fonctionnement hydrodynamique multi-échelles des bassins sahéliens ; études expérimentales en zones cristalline et sédimentaire / Soil surface features and hydrodynamical multi-scales behaviour of sahelian basins ; experimental studies in crystalline and sedimentary zonesMalam Abdou, Moussa 21 February 2014 (has links)
Ce travail vise à caractériser et comparer les fonctionnements hydrodynamiques à plusieurs échelles spatiales en zones cristalline et sédimentaire de l’Ouest nigérien et par suite à proposer un modèle simple de fonctionnement hydrodynamique des bassins expérimentaux cristallins qui soit potentiellement transposable aux échelles supérieures.L’analyse qualitative du paysage montre que ces deux domaines ont des états de surface communs et spécifiques.L’étude expérimentale effectuée sur les états de surface communs (surface biologique, BIOL, d’érosion, ERO, structurale, ST-jac, et cultivée, C) montre, à l’échelle ponctuelle, que la surface ERO a la même valeur de conductivité hydraulique K dans les deux contextes. En revanche, les surfaces C et surtout ST ont des conductivités plus faibles en zone cristalline. Le suivi temporel effectué sur ces deux états de surface en zone cristalline a mis en évidence la stationnarité de la conductivité sur ST (jachère de 5 ans) durant la saison des pluies tandis qu'elle varie fortement sur la surface cultivée en fonction du calendrier cultural et du cumul de pluie. K décroit d’une valeur initiale de 170 mm/h après le sarclage à 20 mm/h (soit la conductivité mesurée sur ST) lorsque la surface sarclée reçoit un cumul de pluie de l’ordre de 70 mm. La conductivité atteint même la valeur de 10 mm/h après un cumul de pluie de 180 mm. Cette variation de la conductivité montre l’avantage à court terme du sarclage qui améliore l’infiltration mais qui à long terme tend à dégrader la surface.Les résultats obtenus à l’échelle de la surface élémentaire (10 m²) valident bien les mesures ponctuelles. La surface ERO a le même coefficient du ruissellement (Kr) en zones cristalline et sédimentaire tandis que les surfaces ST et cultivée ont un Kr plus élevé en zone cristalline. L’analyse de l’évolution temporelle du Kr de la surface cultivée du socle a montré que sur 63 événements pluvieux observés entre 2011 et 2013, 22 ont un Kr supérieur à la moyenne (qui est de 0.25) dont près de 2/3 sont observés après plus de 70 mm de pluie qui suivent le sarclage. Les résultats obtenus à ces deux échelles (ponctuelle et surface élémentaire) sont donc cohérents et montrent que la surface cultivée s’encroûte et peut ruisseler plus que la surface ST et autant que la surface ERO. A l’échelle du bassin versant (5 ha), les Kr sont plus élevés sur les bassins cristallins à cause de ces fortes valeurs de Kr des surfaces élémentaires mais aussi parce qu’ils sont composés d’autres surfaces à forte capacité ruisselante que sont la surface d’affleurement du socle altéré et la surface gravillonnaire ayant un Kr de 0.58. A ces trois échelles (ponctuelle, élémentaire, petit bassin), on note la non-dépendance du fonctionnement hydrodynamique à l'état hydrique initial.L’exploitation des résultats ponctuels obtenus sur le site cristallin (conductivité moyenne de BIOL, ERO, et ST et conductivité variable sur la surface cultivée) dans le modèle de Green et Ampt a permis de caler le potentiel de front par état de surface et décrire de manière très satisfaisante les ruissellements mesurés sur les surfaces élémentaires. Sur la base des ruissellements ainsi calculés, nous avons simulé les hydrogrammes à l’exutoire des bassins expérimentaux en assimilant le fonctionnement de ces derniers à celui des surfaces élémentaires en spatialisant leur infiltrabilité. En faisant l’hypothèse d’une ré-infiltration nulle sur les versants, nous avons appliqué une fonction de transfert simple prenant en compte la distance de chaque surface élémentaire par rapport au réseau hydrographique, une vitesse d'écoulement constante et une pluie imbibante de 3 à 4 mm devant saturer la couverture sableuse de ravine, ce qui est beaucoup moins qu'en zone sédimentaire. Finalement, les hydrogrammes simulés reproduisent assez bien les caractéristiques des hydrogrammes mesurés, ce qui offre une perspective d’application de certains principes du modèle sur de plus grands bassins. / This work aims at characterizing and comparing the hydrodynamical functioning at several spatial scales within the granitic-basement and sedimentary zones of Western Niger. Then, a simple hydrological model that could be suitable for use at larger scales is proposed and tested.Qualitatively, the two geological domains have common and specific surface features.The experimental work carried out onto common surface features (biological crust, BIOL; erosion crust, ERO; fallow structural surface, ST and cultivated, C) shows that, at the point scale, ERO has the same hydraulic conductivity K value in both contexts. On the other hand, surfaces features C and especially ST have lower K values in granitic context.Monitoring of the ST and C sites along the rainy season proved the stationarity of the ST conductivity value. On the contrary, K varies widely with the amount of rain received from an initial value of 170 mm/h after weeding down to 20 mm/h (i.e. the ST measured value) after 70 mm of rain and even 10 mm/h after 180 mm of rain. This variation shows the short-term benefit of weeding onto infiltration but a degradation of the soil surface on the long term.At the plot scale (10 m2), runoff measurements are consistent with point measurements. ERO has the same runoff coefficient (Kr) in granitic and sedimentary zones while ST and C surfaces have a higher Kr in granitic context.Runoff monitoring of the granitic site cultivated plots showed that from a total of 63 rain events between 2011 and 2013, 22 had a Kr value higher than the average value (0.25) from which 2/3 are observed after the surface had received more than 70 mm rain after weeding.Results obtained at the two scales (point and 10-m2 plot) are thus consistent and show that the cultivated surface gets crusted and may produce runoff more than fallow ST sites and as much as ERO features.At the basin scale (5 ha), Kr values are higher in the granitic site, not only because of the higher Kr value for a given surface feature but also because of the specific low-infiltrating surfaces which are granite outcrops and gravel crusts (Kr = 0.58).At the three previous scales (point, plot and small basin), runoff volume was found independent of soil initial moisture.Using the previous point-scale results in a Green-Ampt infiltration model led to calibrate the wetting front pressure head for each surface feature and to satisfactorily describe runoff volumes obtained at the plot scale.By estimating runoff with the Green-Ampt infiltration model at any given point, basin-scale hydrograms were obtained by adding the contribution of all elementary surfaces. Assuming no re-infiltration of runoff water within the basins, a simple transfer function was chosen accounting for the distance of each surface to the hydrological network, a constant water velocity of 0.05 m.s-1 and a volume of 3-4 mm of water necessary to fill the kori sand cover, which is much less than that in the sedimentary context. Finally, simulated hydrograms reproduce nicely the measured ones, which offers the perspective of applying some principles of the model to larger basins.
|
44 |
Simulação numérica tridimensional de processos de deformação em bacias sedimentares / Tridimensional numerical simulation of deformation processes in sedimentary basinsBrüch, André Reinert January 2016 (has links)
O desenvolvimento de modelos teóricos e computacionais para simular a história de deformação e reconstruir o estado termoporomecânico de bacias sedimentares é de grande interesse da indústria do petróleo. A compactação dos sedimentos, o escoamento dos fluidos e o fluxo térmico são processos de grande importância que ocorrem ao longo da diagênese. Fenômenos puramente mecânicos prevalecem nas camadas superiores da bacia associados à expulsão do fluido e ao rearranjo das partículas sólidas, enquanto a compactação químico-mecânica resultante dos processos de pressão-solução intergranular é dominante nas camadas mais profundas, onde as tensões e temperaturas são maiores. Estes processos de deformação podem ser significativamente afetados pela sua evolução térmica, já que o calor altera a viscosidade dos fluidos e as propriedades físico-químicas dos minerais. O objetivo deste trabalho é desenvolver um modelo constitutivo para o material poroso saturado no contexto da termoporomecânica finita e uma ferramenta computacional com uma interface de multiprocessamento em memória compartilhada baseada no método dos elementos finitos para representar os processos de formação e compactação gravitacional de uma bacia sedimentar. As deformações mecânicas e químico-mecânicas são representadas pela plasticidade e viscoplasticidade, respectivamente. Uma característica fundamental do modelo está relacionada à mudança das propriedades do material poroso em função da variação de temperatura e da evolução de caráter irreversível da sua microestrutura. Simulações numéricas realizadas em condições oedométricas permitem investigar a evolução do modelo constitutivo e do comportamento global da bacia, onde é possível verificar o caráter interdependente dos diferentes processos termoporomecânicos envolvidos. A capacidade da ferramenta computacional de representar problemas tridimensionais complexos é demonstrada a partir de uma história de deposição sedimentar associada a camadas estratigráficas com espessuras variáveis. / Development of theoretical and numerical models to simulate the deformation history and rebuild the thermoporomechanical state of sedimentary basins is of great interest for the oil industry. Compaction of sediments, fluid and thermal flows are fundamental coupled processes during diagenesis. Purely mechanical phenomena prevail in the upper layers involving pore fluid expulsion and rearrangement of solid particles, while chemo-mechanical compaction resulting from Intergranular Pressure-Solution (IPS) dominates for deeper burial as stress and temperature increase. The thermal evolution of the basin may substantially affect both processes as heat modifies the viscosity of fluids and physicochemical properties of minerals. The aim of the present contribution is to provide a constitutive model for saturated porous media in the context of finite thermoporomechanics and a numerical tool with a shared memory multiprocessing interface based on the finite element method to deal with depositional phase and gravitational compaction modeling of sedimentary basins. Purely mechanical and chemo-mechanical deformations are respectively modeled by means of plasticity and viscoplasticity. A key feature of the model is related to the evolution of the sediment material properties associated with temperature and large irreversible porosity changes. The evolution of the constitutive model and the overall behavior of the basin are provided by numerical simulations performed under oedometric conditions. The coupled nature of the thermoporomechanical processes is investigated. A depositional history with varying stratigraphic layers is proposed to demonstrate the ability of the numerical tool to model complex 3D problems.
|
45 |
Forward numerical modelling of carbonate basins: an ecological approachClavera-Gispert, Roger 01 November 2016 (has links)
This thesis presents a new stratigraphic forward numerical model to simulate the carbonate production of marine sedimentary basin through ecological model which is implemented in the SIMSAFADIM-CLASTIC program.
This ecological model is based on the Generalized Lotka Voltera equations that model the population evolution of species. These populations are controlled by biological factors (growth rate, carrying capacity and interaction among species), and by the environmental conditions (light, energy of the medium, nutrients, bottom slope and concentration of clastic sediments in suspension) which are combined forming a unique environmental factor that downscale the intrinsic rate of growth.
The algorithm to apply in the code uses an explicit Runge-Kutta numerical method of order (4)5 to solve the differential equations formulated in the ecological model. Finally, a 3D visualization output files for the interpretation and analysis are generated using the VTK format.
The obtained code has been applied in three sample experiments in order to discuss the possibilities and the limitations of the code. The first example is the model of a theoretical basin. The results are compared with real cases. The second example is an actual basin sited in western Mediterranean Sea. The results are discussed to show the applicability and the limitations of the model. The third example applies several configurations to the Aptian Galve sub-basin (Maestrat Basin, E Iberia), allowing to define the environmental conditions.
|
Page generated in 0.099 seconds