• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 74
  • 37
  • 14
  • 12
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 594
  • 207
  • 107
  • 69
  • 66
  • 55
  • 55
  • 51
  • 50
  • 46
  • 41
  • 37
  • 37
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Characterization of potential source rocks of the Prince Albert, Whitehill and Collingham formations in the Laingsburg sub-basin, South Africa

Ferreira, Janine Connie January 2014 (has links)
>Magister Scientiae - MSc / The present research deals with the characterization of the Lower Ecca Group in terms of sedimentology, mineralogy and organic geochemistry. A field study was conducted in order to characterize the sedimentology and thereby determine the environments of deposition of the Prince Albert, Whitehill and Collingham Formations. In addition, shale samples were subjected to geochemical and mineralogical analyses so as to ascertain its source rock properties. The study utilized X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS), total organic carbon (TOC) and Rock-Eval pyrolysis to determine the mineralogy and organic geochemistry of shale from the formations under investigation. The sedimentological investigation revealed that the upper Prince Albert Formation is dominated by shale with thin beds of carbonate. These shales are interpreted to have been deposited by suspension settling in a marine environment which was occasionally interrupted by deposition of carbonates that form in a shallow marine environment. The overlying Whitehill Formation consists predominantly of carbonaceous shale with relatively more resistant shale beds also present. The fine sediments are interpreted to have been deposited from suspension settling under anoxic bottom conditions which would favor the preservation of organic rich material. Deposition of the Whitehill Formation was followed by the Collingham Formation which is dominated by rhythmic deposits of shale and sandstone that are occasionally interrupted by tuff layers. The clay size sediments are interpreted to have been deposited from suspension settling which are interbedded with low density turbidite current deposits in a marine environment. Based on the findings of the field study, it is apparent that the Prince Albert and Collingham Formations were deposited in marine environments, with the Whitehill Formation being deposited in an anoxic environment. These environments are known to be dominated by phytoplanktonic organisms and algal debris, and as such shales deposited in these environments contain predominantly Type I (derived from algae) and II kerogen (derived from plankton). It can therefore be postulated that Type I and II kerogens are the dominant constituents of organic matter in the Lower Ecca Group shales. Mineralogically, the shales consist chiefly of kaolinite, smectite and illite clay minerals, which are derived from a combination of weathering of feldspars, and the alteration of other clay minerals. The latter being inferred from the existence of albite in all the studied shale samples, pyroclastic material observed in the field, as well as the occurrence of alteration along clay mineral edges.
172

The geology of the southeast quarter of the Bone Mountain quadrangle, Oregon

Kent, Richard Cortland 01 January 1972 (has links)
This thesis is a study of the geology of the southeast quarter of the Bone Mountain Quadrangle. The bedrock geology mapped includes about 56 square miles.The Klamath Mountain and Coast Range Provinces of southwestern Oregon are represented in the area. Rocks in the area include the Rogue, Dothan Riddle, Days Creek, upper member of the Umpqua and Tyee Formations. The ages of these rocks range from Late Jurassic to middle Eocene. Late Jurassic ultramafic and mafic intrusive rocks associated with the Rogue Formation occur in the Klamath Province. The metavolcanics of the Rogue Format ion and an associated linear belt of mafic intrusive rocks have been thrust northwestward over the Late Jurassic-Early Cretaceous Riddle Formation. Ultramafics occur along the fault. Graywackes, siltstones, and conglomerate lenses of the Dothan Formation have been downfaulted relative to the Rogue Formation along a southeasterly dipping fault. The Dothan Formation is steeply dipping to the southeast and contains numerous folds inclined to the northwest. The genetic relationships of faulting are problematic. The Myrtle Group conglomerates, siltstones and sandstones are greatly folded and dip to the northwest. Internal structures are intense and diagnostic fauna of Late Jurassic to Early Cretaceous age indicates separate lithologic units of shallow water deposition. Tertiary sedimentary rocks include the upper member of the Umpqua and Tyee Formations of middle Eocene age. The formations are gently dipping to the northwest with coal beds and fauna indicating a near shore depositional environment.
173

Constraining Morphologic Change Across the Great Ordovician Biodiversification Event: A Case Study from the Arbuckle Mountains of Oklahoma

Hennessey, Sarah A. 05 June 2023 (has links)
No description available.
174

Regional Stratigraphy and Lithologic Characterization of the Tuscaloosa Marine Shale in Southwest Mississippi

Dubois, Kalli Alyse 10 August 2018 (has links)
The Tuscaloosa Marine Shale (TMS) in southwest Mississippi and south-central Louisiana has potential to become a prolific source of fossil fuels using hydraulic fracturing technology. The objective of this study is to better understand the sequence and regional stratigraphy, lithology, and character of the TMS. Studying the TMS’s lithologic, depositional, and diagenetic properties is essential to maximize potential production. Characterization of the eastern TMS was performed with cuttings from two wells provided by the Mississippi Oil and Gas Board through MDEQ, and two provided by the USGS. Thirty-one petrophysical logs were correlated, to make cross sections and trace sequence stratigraphic intervals within the TMS. Results of the study showed lithologic variability and compaction across the study area, and a sequence stratigraphic correlation of the highstand systems track between the Tuscaloosa and Eagle Ford Groups. This research aims to work toward the greatest potential of the TMS as an unconventional reservoir.
175

Development and application of µXRF-CS Cl as a proxy for Holocene drought and hurricane conditions in the Yucatan Aquifer, Mexico

McNeill-Jewer, Chelsi January 2020 (has links)
The highly porous karst limestone of the Yucatan Peninsula promotes infiltration of rainwater into the subsurface, where it becomes part of the Yucatan Aquifer. The combination of high subsurface porosity, high evapotranspiration, and seasonal droughts results in relative scarcity of lakes or drinkable water at the surface. The majority of past and present people living on the Yucatan Peninsula have depended on groundwater resources for domestic purposes. Whereas coastal karst aquifers such as the one in the Yucatan Peninsula are important water resources, they are highly vulnerable to climate-related changes such as sea level (SL) rise, increased hurricane intensity and extended droughts. With ongoing development along the eastern coast of the Yucatan Peninsula (Quintana Roo), predicted increases in storm intensity, and rising population and potential pollutant output, it has become imperative to study the seasonal and long-term effects of climate and human activity on the Yucatan Aquifer. Like many coastal karst aquifers, the Yucatan Aquifer is stratified according to density, with the Meteoric Water Mass (MeWM) flowing towards the coast on top, and the Marine Water Mass (MaWM) flowing inland on the bottom. The current basis of our knowledge about how the two water masses interact has been from short-term instrumental monitoring and numerical modelling, which is useful for understanding straightforward relationships between salinity, precipitation and temperature across the two water masses and have paved the way for more complex analyses to be completed using the simple principles to guide geochemical studies of sediment within the systems. Generally, sediment cores have been analysed discretely using various methods including grain size analysis, micropaleontology, WD-XRF, and others, however the recent rise of µXRF Core Scanning provides a quicker, more cost effective and higher-resolution method for studying climate-related patterns in sediment cores. This thesis outlines and provides robust evidence for three new methods of using µXRF-CS to determine past and present climatological changes and their relationship to sediment elemental counts. We provide the first outline of the seasonal and spatial controls of geochemical changes in sedimentation in a coastal cave system (Yax Chen), using four years of in situ sediment collection. We then provide the first calibrated record of past salinity based on Cl counts within sediment cores taken from shallow lakes. Although instrumental monitoring has provided evidence that the aquifer is impacted by modern wet and dry periods, the effect of past climate on the aquifer has not been investigated. We provide the first record of water-column mixing at three locations within coastal Quintana Roo. This demonstrates that there has been a long-term climate impacts to coastal Yucatan Peninsula groundwater, which may be scaled to other karst islands and provides evidence that increased hurricane frequency and/or magnitude could change the baseline salinity of the fresh MeWM. / Dissertation / Doctor of Philosophy (PhD) / The porous limestone (karst) geology of the Yucatan Peninsula results in percolation of rainwater down into the subsurface where it is held in the vast Yucatan Aquifer that past and present people have depended on for water resources. Such aquifers are highly vulnerable to human activity and also climate change via increased sea level rise, hurricane intensity and droughts. The Yucatan Aquifer is made up of two separate water masses that have different salinities, and can interact physically and chemically due to changes in climate and weather. Sediment cores can be used to look at subannual geochemical changes which reflect long term behaviour of the aquifer, but first the relationship between sediment change and climate must be established. This thesis uses an iTRAX X-Ray Fluorescence Core Scanner (XRF-CS) to investigate changes in surface water and groundwater over the past 6000 years, and provides the first record of rainfall-induced mixing in a coastal karst aquifer. We also provide evidence of rapid salinity change in shallow lakes associated with intense dry periods, and reveal relationships between cave sedimentation and surface vegetation coverage.
176

Facies Analysis and Paleodischarge of Rivers within a Compound Incised Valley, Cretaceous Ferron Sandstone, Utah

Kimmerle, Stephanie 06 1900 (has links)
Classification of river systems based on dimension and lithology of architectural elements is critical in determining their scale and role in ancient drainages as tributaries, distributaries, or trunk river systems. Facies boundaries associated with the zonation of the fluvio-estuarine system can be difficult to predict using standard facies and sequence stratigraphic models, particularly within broad, long-lived compound incised valley fills. These questions are addressed in an outcrop study of incised valleys in the Turonian Ferron Sandstone Member of the Western Interior Seaway, southern Utah. Field data includes 8 measured sections containing detailed lithological, ichnological, paleocurrent, and architectural data, and 3 high resolution gigapan photomosaics of opposing outcrop faces oriented oblique to depositional dip. The compound valley records multiple episodes of cut and fill, with three nested valleys, each containing multiple channel stories. An upward progression from single thread meandering fluvial style, indicated by large scale laterally accreting point bar deposits, to more freely avulsing rivers in upper stories is documented. Lithological analysis of the oldest valley shows grain size distributions ranging from medium lower sandstone at the valley base to fine lower sandstone towards the top, and is characterized by amalgamated macroform deposits with dune scale crossbedding and abundant mud rip up clasts throughout. The second shows variable estuarine laterally accreting point bars, which coarsen away from the valley margin. The youngest valley is dominated by fining upward successions passing from medium lower dune scale cross bedded sandstone at the base with few mud clasts, to rippled very fine upper sandstone and interfingered floodplain shale deposits. Tidal influence is documented; suggesting that rivers were positioned basinward of the paleo backwater length, and estuarine facies seen in V2 suggests they are within the bayline. These rivers are among the largest documented in the Ferron and show that fluvial style and scale changes regionally within this large valley system. / Thesis / Master of Science (MSc)
177

Sedimentology, Ichnology and High-Resolution Allostratigraphy of the Lower Cretaceous Viking Fonnation, Central Alberta, Canada

Burton, James 05 1900 (has links)
<p> The Lower Cretaceous (Upper Albian) Viking Formation of central Alberta contains numerous linear sandbodies and fewer large irregularly-shaped sandbodies. Most studies to date have focused on individual sandbodies, leaving their interrelationships largely unknown. Developing a high-resolution allostratigraphy for the Viking of central Alberta allows mapping of regional bounding discontinuities and the definition of distinct allomembers. Placement of the Viking hydrocarbon fields within this framework permits an understanding of the exact stratigraphic relationships of the various fields. </p> <p> Examination of 120 cores and numerous well log correlations suggests the existence of four regionally mappable bounding discontinuities (BDl-4) which separate five distinct allomembers (I-V). Sandbodies within these allomembers were deposited in a variety of sedimentologically distinct environments. These include 'regional Viking' offshore to shoreface sandstones, prograding highstand shoreface sediments, transgressive incised shoreface sediments, and forced regressive, onlapping shoreface 'tongues'. The series of linear trending hydrocarbon fields from Joffre to Chain are also stratigraphically distinct. The sandbodies exist at five separate stratigraphic horizons and therefore are not all part of the same incised shoreface deposits. </p> <p> The four regional bounding discontinuities are interpreted as transgressive surfaces of erosion formed by four separate drops and subsequent rises of relative sea level. These fluctuations were greater than 30m and each complete cycle occurred over roughly 375,000 years. </p> / Thesis / Master of Science (MSc)
178

Landsystem analysis of three outlet glaciers, southeast Iceland

Lee, Rebecca E. January 2016 (has links)
Landsystem analysis is a commonly applied methodology which focuses on process-form relationships when applied in glacial environments. It can be used to understand and recreate the geomorphological evolution of glacial deposits from modern and ancient sediments. The purpose of this study is to examine the forefields of three closely located outlet glaciers of the Vatnajökull Ice Cap in southeast Iceland to determine the factors affecting the landsystems of these glaciers. A combination of digital based methods and field work focusing on geomorphology and sedimentology were used to define the landsystems. A classification code and associated symbology was used in this study to create consistency of landsystem analysis and can be used in future similar studies of glacial environments. The three glaciers, Morsárjökull, Skaftafellsjökull and Svínafellsjökull were chosen due to their shared source and close proximity, lying within adjacent valleys. The historical changes of the three glaciers have been well documented with aerial photographs, historical maps and glacier margin measurements. LiDAR were used to interpolate 2 m digital elevation models (DEM) of the three glacier forefields. These glaciers have varying topography, bedrock type and ice distribution (hypsometry, equilibrium line altitude (ELA)) which impacts the deposition at the glacier margin. The forefields of Morsárjökull and Skaftafellsjökull exhibit many similarities in the distribution and scale of landforms similar to the characteristics of the established active temperate landsystem commonly found in Iceland. However, the forefield of Svínafellsjökull has many differences compared to Skaftafellsjökull and Morsárjökull in the scale, type and distribution of landforms and sediments. Bedrock type, hypsometry and glacial debris content are major factors that influence differences in these landsystems. These three forefields may be used as analogues to enhance understanding of paleoenvironmental conditions that existed along the southern margin of Pleistocene glaciers that covered much of northern North America and Europe in the past. / Thesis / Master of Science (MSc)
179

Transitional Facies and Sequence Stratigraphic Complexity of Shallow-Marine Star Point Formation to Coastal-Plain Blackhawk Formation Along Depositional-Strike, Wasatch Plateau, Utah

Ranson, Andrew M 18 May 2012 (has links)
Facies and stratigraphic architecture right at the transition from marine to non-marine environments is poorly documented. In the Cretaceous outcrops of Utah, Star Point and Blackhawk Formations are well studied. The nature of spatio-temporal transition of these two Formations, in the deposition-strike orientation, remains undocumented. This study characterizes facies and stratigraphic complexity at the transition of the two Formations that crop out in depositional-strike orientation in the Wasatch Plateau. Data from outcrop including photomosiacs and measured sections demonstrate this complexity at a range of scales. The Star Point constitutes a shoreface environment. The Blackhawk constitutes a coastal-fluvial environment. In the northern part of study area, the transition from marine to continental strata is expressed by intertonguing succession. The dip-oriented outcrops show pinch-outs of two parasequences into coastal-plain deposits. This complexity decreases southward, the southern outcrops show a simple transition. At least two sequence boundaries are correlated across the outcrop belt.
180

Influence of deep-seated structure on hydrocarbon accumulations in the Cooper and Eromanga Basins

Boucher , Rodney January 2005 (has links)
The primary objective of this study is to provide a greater understanding of the tectonic evolution of the Warburton, Cooper, Eromanga and Lake Eyre Basins in central Australia. However, this study additionally attempts to provide a greater understanding of lineaments. This study compares lineament data with a traditional tectonic analysis in order to evaluate lineaments and to best understand the tectonic evolution of the region.

Page generated in 0.07 seconds