Spelling suggestions: "subject:"segmentação dde imagens"" "subject:"segmentação dee imagens""
21 |
Um estudo comparativo de segmentação de imagens por aplicações do corte normalizado em grafos / A comparative study of image segmentation by application of normalized cut on graphsFerreira, Anselmo Castelo Branco 17 August 2018 (has links)
Orientador: Marco Antonio Garcia de Carvalho / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-17T11:47:27Z (GMT). No. of bitstreams: 1
Ferreira_AnselmoCasteloBranco_M.pdf: 7338510 bytes, checksum: 593cb683d0380e0c894f0147a4129c77 (MD5)
Previous issue date: 2011 / Resumo: O particionamento de grafos tem sido amplamente utilizado como meio de segmentação de imagens. Uma das formas de particionar grafos é por meio de uma técnica conhecida como Corte Normalizado, que analisa os autovetores da matriz laplaciana de um grafo e utiliza alguns deles para o corte. Essa dissertação propõe o uso de Corte Normalizado em grafos originados das modelagens por Quadtree e Árvore dos Componentes a fim de realizar segmentação de imagens. Experimentos de segmentação de imagens por Corte Normalizado nestas modelagens são realizados e um benchmark específico compara e classifica os resultados obtidos por outras técnicas propostas na literatura específica. Os resultados obtidos são promissores e nos permitem concluir que o uso de outras modelagens de imagens por grafos no Corte Normalizado pode gerar melhores segmentações. Uma das modelagens pode inclusive trazer outro benefício que é gerar um grafo representativo da imagem com um número menor de nós do que representações mais tradicionais / Abstract: The graph partitioning has been widely used as a mean of image segmentation. One way to partition graphs is through a technique known as Normalized Cut, which analyzes the graph's Laplacian matrix eigenvectors and uses some of them for the cut. This work proposes the use of Normalized Cut in graphs generated by structures based on Quadtree and Component Tree to perform image segmentation. Experiments of image segmentation by Normalized Cut in these models are made and a specific benchmark compares and ranks the results obtained by other techniques proposed in the literature. The results are promising and allow us to conclude that the use of other image graph models in the Normalized Cut can generate better segmentations. One of the structures can also bring another benefit that is generating an image representative graph with fewer graph nodes than the traditional representations / Mestrado / Tecnologia e Inovação / Mestre em Tecnologia
|
22 |
Segmentação de tecidos do cerebro humano em imagens de ressonancia magnetica e sua avaliação / Human brain magnetic resonance-image segmentation and its evaluationCappabianco, Fabio Augusto Menocci 15 August 2018 (has links)
Orientadores: Alexandre Xavier Falcão, Guido Costa Souza de Araujo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-15T05:47:56Z (GMT). No. of bitstreams: 1
Cappabianco_FabioAugustoMenocci_D.pdf: 2671052 bytes, checksum: 751e1d22cedbe679c7440e3163af54d6 (MD5)
Previous issue date: 2010 / Resumo: A segmentação de tecidos cerebrais se tornou fundamental para a neurologia no tratamento e diagnose de pacientes. Muitas contribuições tem aprimorado as metodologias de segmentaçao mas, ainda ha muito a ser feito. De fato, ruídos provenientes da aquisiçao da imagem, a enorme quantidade de dados, variações anatômicas decorrentes de doenças, diferença de idade e sexo, alem de incisoes cirúrgicas sao alguns dos desafios enfrentados. Alem disso, e muito difícil gerar padroes ouro dos tecidos cerebrais contidos nas imagens de ressonancia magnetica e tambem escolher metricas apropriadas para avaliar uma determinada metodologia de segmentaçao de tecidos. Neste contexto, apresentamos uma revisao das operações de pre-processamento mais populares da literatura, bem como das diversas metodologias propostas para a segmentaçao de tecidos. Tambem apresentamos uma metodologia inovadora para a se gmentaçao dos tecidos de substancia branca, substancia cinzenta e líquido cerebro espinhal baseada no algoritmo de agrupamento de dados por floresta de caminhos otimos, com as seguintes características desejaveis: baixo tempo de processamento, robustez, alta acuracia, ajuste intuitivo de parametros, adaptabilidade a imagens de diferentes protocolos e a variaçoes anatomicas, e efetividade ao corrigir o efeito de heterogeneidade de campo magnetico. Avaliamos a metodologia quantitativamente e qualitativamente, comparando-a com dois metodos populares da literatura sobre cinco bases de dados de modalidades e anatomias diferentes. A avaliaçao quantitativa leva em conta o intervalo de operaçao das metodologias, e a avaliaçao qualitativa leva em conta o ponto de vista de especialistas com respeito a acuracia das segmentaçoes. Assim, acreditamos que a metodologia de segmentaçao de tecidos cerebrais agrega importantes contribuições ao estado da arte. Ja a metodologia de avaliaçao proposta evidencia a importancia da escolha de metricas apropriadas na analise de imagens medicas / Abstract: Segmentation of brain tissues from MR-images has become crucial to advance research, diagnosis and treatment in Neurology. Despite the large number of contributions, brain tissue segmentation is still a challenge, due to problems in image acquisition, large data sets, and anatomical variations caused by surgery, pathologies and differences in sex and age. Another difficulty is to create reliable ground truths for evaluation, which also requires suitable metrics. In this work, we review the most important pre-processing operations, as well as the most popular brain tissues segmentation methods. We also propose a new approach based on optimum-path forest clustering, which improves previous works on various aspects: speed, robustness, accuracy, intuitive tuning of parameters and adaptability to different imaging modalities and anatomies. The effectiveness of the approach can be noticed in both inhomogeneity correction and in white matter, gray matter and cerebral-spinal fluid segmentation. The method is evaluated quantitatively and qualitatively by taking into account two other popular methods, five datasets from diferent modalities, an operational range of parameters for each method and scores from distinct specialists. The results reveal a signiicant contribution to the state-of-the-art and emphasize the importance of suitable evaluation metrics in medical image analysis / Doutorado / Processamento e Analise de Imagens / Doutor em Ciência da Computação
|
23 |
Detecção de elementos antrópicos em imagens aéreas da floresta amazônicaCavalcanti, Luiz Carlos Amaral Mendonça 01 July 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-01T13:30:13Z
No. of bitstreams: 1
Dissertação - Luiz C. A. M. Cavalcanti.pdf: 12456865 bytes, checksum: 8cefb0785da034136e29212e34ef9290 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-01T13:30:28Z (GMT) No. of bitstreams: 1
Dissertação - Luiz C. A. M. Cavalcanti.pdf: 12456865 bytes, checksum: 8cefb0785da034136e29212e34ef9290 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-01T13:30:49Z (GMT) No. of bitstreams: 1
Dissertação - Luiz C. A. M. Cavalcanti.pdf: 12456865 bytes, checksum: 8cefb0785da034136e29212e34ef9290 (MD5) / Made available in DSpace on 2016-12-01T13:30:50Z (GMT). No. of bitstreams: 1
Dissertação - Luiz C. A. M. Cavalcanti.pdf: 12456865 bytes, checksum: 8cefb0785da034136e29212e34ef9290 (MD5)
Previous issue date: 2016-07-01 / Agência de Fomento não informada / During environmental crimes patrolling, the response time is a very important component
for the success of the missions. Generally, infractions occur in remote and hard-access
places, characteristics that hinder both the patrolling as well the action of environmental
protection agents. To increase the approaches’ success rate and reduce the risk of human
lives, unmanned aerial vehicles (UAVs) can be used to cover large areas of forest in a short
time without being perceived by offenders, allowing the patrolling organs responsible for
these areas to plan and act more efficiently in the repression of such crimes. The new
problem generated by this approach is the huge amount of data generated during these
missions, which often includes hours of video. The manual inspection of all this material
in searching for anthropic elements is very tiring and error-prone. This work presents
a evaluation of image segmentation techniques, inspections of features to be extracted,
followed by a supervised classification of those segments for anthropic element detection in
amazon’s rain forest aerial images. Besides making publicly available a dataset with more
than 3,000 images and 10,000 segments labeled accordingly, this work investigates different
strategies for anthropic elements classification. The experiments obtained a consistency
error rate inferior to 8% in image segmentation and a precision above 94% on target
objects classification through one-class classifiers ensemble, using One-class SVM and
REPTree algorithms. / Durante o patrulhamento de crimes ambientais, o tempo de resposta é um componente
muito importante no sucesso das missões. Geralmente as infrações ocorrem em lugares
ermos e de difícil acesso, características que dificultam tanto o patrulhamento quanto a
ação de agentes de preservação ambiental. Para aumentar a taxa de sucesso das abordagens
e reduzir o risco de vidas humanas, veículos aéreos não-tripulados (VANTs) podem ser
usados para cobrir grandes áreas de floresta em pouco tempo, sem que sejam percebidos
por infratores, permitindo que os órgãos de patrulhamento dessas áreas possam planejar e
agir com mais eficiência na repressão a esses crimes. O novo problema gerado por essa
abordagem é a enorme quantidade de dados gerada durante essas missões, que muitas
vezes compreendem horas de vídeo. A inspeção manual de todo esse material em busca
de elementos antrópicos é muito cansativa e propensa a erros. Este trabalho apresenta
uma avaliação de técnicas de segmentação de imagens, inspeção de características a serem
extraídas, seguido da classificação supervisionada destes segmentos para detecção de
elementos antrópicos em imagens aéreas da floresta amazônica. Além da publicação de
uma base de dados com cerca de 3.000 imagens e 10.000 segmentos devidamente rotulados e
investiga diferentes estratégias para classificação de elementos antrópicos. Os experimentos
realizados obtiveram taxas de erro de consistência inferiores a 8% na segmentação das
imagens utilizando o algoritmo SRM e precisão acima de 94% na classificação dos objetos de
interesse através de conjuntos de classificadores unários, utilizando os algoritmos One-Class
SVM e REPTree.
|
24 |
Corte em grafos e segmentação de imagens utilizando um algoritmo aglomerativo de agrupamento hierárquico / Graph cut and image segmentation using an hierarquical agglomerative clustering algorithmChiba, Elaine Ayumi, 1988- 24 August 2018 (has links)
Orientador: Marco Antonio Garcia de Carvalho / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-24T15:15:13Z (GMT). No. of bitstreams: 1
Chiba_ElaineAyumi_M.pdf: 5856831 bytes, checksum: f9d4b4bea391d9b772f2c53ce2466420 (MD5)
Previous issue date: 2014 / Resumo: Representar os elementos de uma imagem em forma de grafos torna a estrutura organizada permitindo formular problemas de forma flexível e ser computacionalmente mais eficiente. Existem muitas técnicas da teoria de grafos sendo utilizadas em processamento digital de imagens. Em particular, o particionamento em grafos ou corte em grafos tem sido estudada por diversos autores como uma ferramenta de segmentação de imagens. Particionamento de um grafo refere-se à sua divisão em vários subgrafos tais que cada um deles representa um objeto de interesse na imagem. Neste trabalho, propomos um algoritmo de agrupamento hierárquico aglomerativo dos nós do grafo com base nas métricas de corte e corte médio. As segmentações foram avaliadas usando o benchmark da Berkeley BSDS500 que compara e classifica as segmentações em relação à outras técnicas existentes na literatura. Os resultados obtidos são promissores e nos permite concluir de que a combinação das métricas de corte e corte médio possibilitou melhores segmentações / Abstract: Representing the elements of an image in graphs makes the structure organized allowing to formulate problems in a flexible manner and can be more computationally efficient. There are many techniques of graph theory that are used in digital image processing. In particular, the graph partitioning or graph cut has been studied by several authors as a tool for image segmentation. Partitioning a graph refers to its division into several subgraphs such that each of them represents a meaningful object of interest in the image. In this work we propose a algorithm based on hierarchical agglomerative clustering of the graph nodes driven by the cut and mean cut criteria. The segmentati- ons results were evaluated using the benchmark of Berkeley BSDS500 that compares and classifies the results in relation to other existing techniques in the literature. The results obtained are promising and allows us to conclude that the combination of the cut and mean cut criteria possible best segmentations / Mestrado / Tecnologia e Inovação / Mestra em Tecnologia
|
25 |
Segmentação de imagens digitais combinando watershed e corte normalizado em grafos / Digital image segmentation combining watershed and normalized cutPinto, Tiago Willian, 1985- 25 August 2018 (has links)
Orientadores: Marco Antonio Garcia de Carvalho, Paulo Sérgio Martins Pedro / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-25T02:01:02Z (GMT). No. of bitstreams: 1
Pinto_TiagoWillian_M.pdf: 4501631 bytes, checksum: fd8dab16452e93b1ceec36bc90f085b9 (MD5)
Previous issue date: 2014 / Resumo: Em Visão Computacional, a importância da segmentação de imagens é comparável apenas à sua complexidade. Interpretar a semântica de uma imagem com exatidão envolve inúmeras variáveis e condições, o que deixa um vasto campo em aberto aos pesquisadores. O intuito deste trabalho é implementar um método de segmentação de imagens através da combinação de quatro técnicas de computação: A Transformação Watershed, o Watershed Hierárquico, o Contextual Spaces Algorithm e o Corte Normalizado. A Transformação Watershed é uma técnica de segmentação de imagens do campo da Morfologia Matemática baseada em crescimento de regiões e uma forma eficiente de implementá-la é através da Transformada Imagem-Floresta. Esta técnica produz uma super-segmentação da imagem, o que dificulta a interpretação visual do resultado. Uma das formas de simplificar e reduzir essa quantidade de regiões é através da construção de um espaço de escalas chamado Watershed Hierárquico, que agrupa regiões através de um limiar que representa uma característica do relevo. O Contextual Spaces Algorithm é uma técnica de reclassificação utilizada no campo de Busca de Imagens Baseado em contexto, e explora a similaridade entre os diferentes objetos de uma coleção através da análise do contexto entre elas. O Corte Normalizado é uma técnica que explora a análise do grau de dissimilaridade entre regiões e tem suas bases na teoria espectral dos grafos. O Watershed Hierárquico é uma abordagem multiescala de análise das regiões do watershed, que possibilita a extração de métricas que podem servir de subsídio para aplicação do Corte Normalizado. A proposta deste projeto é combinar estas técnicas, implementando um método de segmentação que explore os benefícios alcançados por cada uma, variando entre diferentes métricas do Watershed Hierárquico com o Corte Normalizado e comparando os resultados obtidos / Abstract: In computer vision , the importance of image segmentation is comparable only by its complexity. Interpreting the semantics of an image accurately involves many variables and conditions, which leaves a vast field open to researchers. The purpose of this work is to implement a method of image segmentation by combining four computing techniques: The Watershed Transform, the Hierarchical Watershed, Contextual Spaces Algorithm and Normalized Cut. The Watershed Transform is a technique for image segmentation from the field of Mathematical Morphology based on region growing and an efficient way to implement it is through the Image Foresting Transform. This technique produces an over-segmentated image, which makes the visual interpretation of the result be very hard. One way to simplify and reduce the quantity of regions is by constructing a space of scales called Hierarchical Watershed, grouping regions through a threshold that represents a characteristic of the relief. The Contextual Spaces Algorithm is a reranking technique used in the field of Context Based Image Retrieval, and explores the similarity between different objects in a collection by analyzing the context between them. Normalized Cut is a technique that exploits the analysis of the degree of dissimilarity between regions and has its foundations in the spectral graph theory. The Hierarchical Watershed is a multiscale approach for analyzing regions of the watershed, which enables the extraction of metrics that can serve as a basis for applying the Normalized Cut. The purpose of this project is to combine these techniques, implementing a segmentation method that exploits the benefits achieved by each one, varying between different metrics of Hierarchical Watershed with Normalized Cut and comparing the results / Mestrado / Tecnologia e Inovação / Mestre em Tecnologia
|
26 |
Segmentação de imagens de rochas e classificação de litofácies utilizando floresta de caminhos ótimos / Segmentation of rock images and lithofacies classification using optimum-path forestMingireanov Filho, Ivan, 1977- 22 August 2018 (has links)
Orientadores: Alexandre Campane Vidal, Alexandre Xavier Falcão / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências / Made available in DSpace on 2018-08-22T17:02:26Z (GMT). No. of bitstreams: 1
MingireanovFilho_Ivan_M.pdf: 33856245 bytes, checksum: 516137beeec348cf169f06272d16b0cb (MD5)
Previous issue date: 2013 / Resumo: A caracterização de reservatórios é fundamental na construção do modelo geológico para a produção do campo. O melhoramento de técnicas matemáticas, que auxiliam a interpretação geológica, influencia diretamente o plano de desenvolvimento e gerenciamento dos poços. Nesse sentido, este trabalho utiliza uma aplicação inédita na caracterização de reservatórios da técnica de Transformada Imagem Floresta (Image Foresting Transform - IFT) em segmentação de imagens de rocha para a análise petrofísica. A técnica interpreta a imagem como um grafo, onde os pixels são os nós e os arcos são definidos por uma relação de adjacência entre os pixels. O custo de um caminho no grafo é determinado por uma função que depende das propriedades locais da imagem. As raízes da floresta surgem de um conjunto de pixels escolhidos como sementes e a IFT atribui um caminho de custo mínimo das sementes a cada pixel da imagem para gerar uma Floresta de Caminhos Ótimos (Optimum-Path Forest - OPF). Com isso, nas imagens de lâminas de arenito, os grãos são segmentados em relação ao poro e os grãos em contato são separados entre si. Com os resultados obtidos é possível o estudo da morfologia dos grãos e porosidade da amostra. O método consiste de dois processos principais, um totalmente automático para segmentar a imagem e outro que utiliza uma interface gráfica para permitir correções dos erros de classificação gerados pelo processo automático. A acurácia é medida comparando a imagem corrigida por interação do usuário com a segmentada automaticamente. Outra aplicação inédita apresentada no trabalho é a utilização do classificador supervisionado baseado em OPF para a classificação de dados de perfilagem geofísica do campo de Namorado / Abstract: The reservoir characterization is fundamental in the construction process of geological model for field production. The improvement of mathematical techniques that assist the geological interpretation, has a directly influence in the development plan and management of the wells. Accordingly, this study uses a novel application in reservoir characterization, Image Foresting Forest (IFT) technique to image segmentation of rock for petrophysical analysis. The IFT interprets an image as a graph, whose nodes are the image pixels, the arcs are defined by an adjacency relation between pixels, and the paths are valued by a connectivity function. The roots of forest are a set of pixels selected as seeds and the IFT assigns a minimum path-cost to each image pixel generation an Optimum-Path Forest (OPF). The result is a segmentation of grains from pore in sandstone thin section images and the separation of the touching grains automatically. This allows the study of grain morphology and sample porosity. The method consists of two major processes: first, a totally automatic image segmentation and second and user interaction to correct misclassified grains. The accuracy is computed comparing the corrected image by the user with the image segmented automatically. Another novel application presented in the work is the use of supervised classification based on OPF for classification of geophysical logging data from Campo de Namorado / Mestrado / Reservatórios e Gestão / Mestre em Ciências e Engenharia de Petróleo
|
27 |
Aglomeração de pixels pela transformada imagem floresta e sua aplicação em segmentação de fundo de imagens natuarais / Clustering of pixels by image foresting transform and its application in background segmentation of natural imagesSilva, Maíra Saboia da 19 August 2018 (has links)
Orientador: Alexandre Xavier Falcão / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-19T04:43:31Z (GMT). No. of bitstreams: 1
Silva_MairaSaboiada_M.pdf: 1907857 bytes, checksum: 515dfcdf136f4e9cc1c1d8b0690b3116 (MD5)
Previous issue date: 2011 / Resumo: Esta dissertação apresenta uma metodologia automática para separar objetos de interesse em imagens naturais. Objetos de interesse são definidos como os maiores objetos que se destacam com relação aos pixels em torno deles dentro de uma imagem. Estes objetos não precisam necessariamente estar centrados, mas devem possuir o mínimo possível de pixels na região assumida como fundo da imagem (e.g., borda de imagem com uma dada espessura). A metodologia é baseada em segmentação de fundo e pode ser dividida em duas etapas. Primeiramente, um modelo nebuloso é criado para o fundo da imagem utilizando um método de agrupamento baseado em função densidade de probabilidade das cores de fundo. A partir do modelo é criado um mapa de pertinência, onde os pixels de objeto são mais claros do que os pixels de fundo. Foram investigadas técnicas de agrupamento baseadas em deslocamento médio, transformada imagem floresta, mistura de Gaussianas e maximização da esperança. Três métodos para criação do mapa de pertinência foram propostos e comparados; um inteiramente baseado na transformada imagem floresta, o outro em mistura de Gaussianas e o terceiro em maximização da esperança. Nos dois últimos casos, o agrupamento baseado na transformada imagem floresta foi utilizado como estimativa inicial dos grupos. Em seguida, o mapa de pertinência é utilizado para possibilitar a seleção de pixels sementes de objeto e fundo. Estes pixels geram um agrupamento binário da imagem colorida que separa o fundo do(s) objeto(s). Os experimentos foram realizados com uma base heterogênea composta por 50 imagens naturais. Os melhores resultados foram os obtidos pela metodologia inteiramente baseada na Transformada Imagem Floresta. Para justificar o uso de um agrupamento binário das cores para segmentação, os resultados foram comparados com uma limiarização ótima, aplicada ao mapa de pertinência. Esses testes foram realizados com o algoritmo de Otsu, mas o agrupamento binário apresentou melhores resultados. Também foi proposto um método híbrido de binarização do mapa de pertinência, envolvendo a limiarização de Otsu e a transformada imagem floresta. Neste caso, a limiarização de Otsu reduz o número de parâmetros em relação à primeira / Abstract: This work presents a new methodology for automatic extraction of desired objects in natural images. Objects of interest are defined as the largest components that differ from their surrounding pixels in a given image. These objects do not need to be centered, but they should contain a minimum number of pixels in the region assumed as background (e.g., an image border of certain thickness). This methodology is based on background segmentation and it can be summarized in two steps. First, a fuzzy model is created by a clustering method based on probability density function of the background colors. This model is a membership map, wherein object pixels are brighter than background pixels. For clustering, the following techniques were investigated: mean-shift, image foresting transform, Gaussian mixture model and expectation maximization. We then propose and compare three approaches to create a membership map; a first method entirely based on the image foresting transform, a second approach based on Gaussian mixture model and a third tecnique using expectation maximization. The clustering based on image foresting transform was adopted as the initial estimate for the clusters in the case of the two last methods. In a second step, the membership map is used to enable the selection of object and background seed pixels. These pixels create a binary clustering of the color pixels that separates background and object(s). The experiments involved a heterogeneous dataset with 50 natural images. The approach entirely based on the image foresting transform provided the best result. In order to justify the use of a binary clustering of color pixels instead of optimum thresholding on the membership map, we demonstrated that the binary clustering can provide a better result than Otsu's approach. It was also proposed a hybrid approach to binarize the membership map, which combines Otsu's thresholding and image foresting transform. In this case, Otsu's thresholding reduces the number of parameters in regard to the first approach / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
28 |
Efficient hierarchical layered graph approach for multi-region segmentation / Abordagem eficiente baseada em grafo hierárquico em camadas para a segmentação de múltiplas regiõesLeon, Leissi Margarita Castaneda 15 March 2019 (has links)
Image segmentation refers to the process of partitioning an image into meaningful regions of interest (objects) by assigning distinct labels to their composing pixels. Images are usually composed of multiple objects with distinctive features, thus requiring distinct high-level priors for their appropriate modeling. In order to obtain a good segmentation result, the segmentation method must attend all the individual priors of each object, as well as capture their inclusion/exclusion relations. However, many existing classical approaches do not include any form of structural information together with different high-level priors for each object into a single energy optimization. Consequently, they may be inappropriate in this context. We propose a novel efficient seed-based method for the multiple object segmentation of images based on graphs, named Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). It uses a tree of the relations between the image objects, being each object represented by a node. Each tree node may contain different individual high-level priors and defines a weighted digraph, named as layer. The layer graphs are then integrated into a hierarchical graph, considering the hierarchical relations of inclusion and exclusion. A single energy optimization is performed in the hierarchical layered weighted digraph leading to globally optimal results satisfying all the high-level priors. The experimental evaluations of HLOIFT and its extensions, on medical, natural and synthetic images, indicate promising results comparable to the state-of-the-art methods, but with lower computational complexity. Compared to hierarchical segmentation by the min cut/max-flow algorithm, our approach is less restrictive, leading to globally optimal results in more general scenarios, and has a better running time. / A segmentação de imagem refere-se ao processo de particionar uma imagem em regiões significativas de interesse (objetos), atribuindo rótulos distintos aos seus pixels de composição. As imagens geralmente são compostas de vários objetos com características distintas, exigindo, assim, restrições de alto nível distintas para a sua modelagem apropriada. Para obter um bom resultado de segmentação, o método de segmentação deve atender a todas as restrições individuais de cada objeto, bem como capturar suas relações de inclusão/ exclusão. No entanto, muitas abordagens clássicas existentes não incluem nenhuma forma de informação estrutural, juntamente com diferentes restrições de alto nível para cada objeto em uma única otimização de energia. Consequentemente, elas podem ser inapropriadas nesse contexto. Estamos propondo um novo método eficiente baseado em sementes para a segmentação de múltiplos objetos em imagens baseado em grafos, chamado Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). Ele usa uma árvore das relações entre os objetos de imagem, sendo cada objeto representado por um nó. Cada nó da árvore pode conter diferentes restrições individuais de alto nível, que são usadas para definir um dígrafo ponderado, nomeado como camada. Os grafos das camadas são então integrados em um grafo hierárquico, considerando as relações hierárquicas de inclusão e exclusão. Uma otimização de energia única é realizada no dígrafo hierárquico em camadas, levando a resultados globalmente ótimos, satisfazendo todas as restrições de alto nível. As avaliações experimentais do HLOIFT e de suas extensões, em imagens médicas, naturais e sintéticas,indicam resultados promissores comparáveis aos métodos do estado-da-arte, mas com menor complexidade computacional. Comparada à segmentação hierárquica pelo algoritmo min-cut/max-flow, nossa abordagem é menos restritiva, levando a resultados globalmente ótimo sem cenários mais gerais e com melhor tempo de execução.
|
29 |
Processamento e análise de imagens histológicas de pólipos para o auxílio ao diagnóstico de câncer colorretal / Processing and analysis of histological images of polyps to aid in the diagnosis of colorectal cancerLopes, Antonio Alex 22 March 2019 (has links)
Segundo o Instituto Nacional do Câncer (INCA), o câncer de colorretal é o terceiro tipo de câncer mais comum entre os homens e o segundo entre as mulheres. Atualmente a avaliação visual feita por um patologista é o principal método utilizado para o diagnóstico de doenças a partir de imagens microscópicas obtidas por meio de amostras em exames convencionais de biópsia. A utilização de técnicas de processamento computacional de imagens possibilita a identificação de elementos e a extração de características, o que contribui com o estudo da organização estrutural dos tecidos e de suas variações patológicas, levando a um aumento da precisão no processo de tomada de decisão. Os conceitos e técnicas envolvendo redes complexas são recursos valiosos para o desenvolvimento de métodos de análise estrutural de componentes em imagens médicas. Dentro dessa perspectiva, o objetivo geral deste trabalho foi o desenvolvimento de um método capaz de realizar o processamento e a análise de imagens obtidas em exames de biópsias de tecidos de pólipo de cólon para classificar o grau de atipia da amostra, que pode variar em: sem atipia, baixo grau, alto grau e câncer. Foram utilizadas técnicas de processamento, incluindo um conjunto de operadores morfológicos, para realizar a segmentação e a identificação de estruturas glandulares. A seguir, procedeu-se à análise estrutural baseada na identificação das glândulas, usando técnicas de redes complexas. As redes foram criadas transformado os núcleos das células que compõem as glândulas em vértices, realizando a ligação dos mesmos com 1 até 20 arestas e a extração de medidas de rede para a criação de um vetor de características. A fim de avaliar comparativamente o método proposto, foram utilizados extratores clássicos de características de imagens, a saber, Descritores de Haralick, Momentos de Hu, Transformada de Hough, e SampEn2D. Após a avaliação do método proposto em diferentes cenários de análise, o valor de acurácia geral obtida pelo mesmo foi de 82.0%, superando os métodos clássicos. Conclui-se que o método proposto para classificação de imagens histológicas de pólipos utilizando análise estrutural baseada em redes complexas mostra-se promissor no sentido de aumentar a acurácia do diagnóstico de câncer colorretal / According to the National Cancer Institute (INCA), colorectal cancer is the third most common cancer among men and the second most common cancer among women. Currently the main method used for the diagnosis of diseases from microscopic images obtained through samples in conventional biopsy tests are the visual evaluation made by a pathologist. The use of computational image processing techniques allows the identification of elements and the extraction of characteristics, which contributes to the study of the structural organization of tissues and their pathological variations, leading to an increase of precision in the decision making process. Concepts and techniques involving complex networks are valuable resources for the development of structural analysis methods of components in medical images. In this perspective, the general objective of this work was the development of a method capable of performing the image processing and analysis obtained in biopsies of colon polyp tissue to classify the degree of atypia of the sample, which may vary in: without atypia, low grade, high grade and cancer. Processing techniques including a set of morphological operators, were used to perform the segmentation and identification of glandular structures. Next, structural analysis was performed based on glands identification, using complex network techniques.The networks were created transforming the core of the cells that make up the glands in vertices, making the connection of the same with 1 to 20 edges and the extraction of network measurements to create a vector of characteristics. In order to comparatively evaluate the proposed method, classical image characteristic extractors were used, namely, Haralicks Descriptors, Hus Moments, Hough Transform, and SampEn2D. After the evaluation of the proposed method in different analysis scenarios, the overall accuracy value obtained by it was 82.0%, surpassing the classical methods. It is concluded that the proposed method for the classification of histological images of polyps using structural analysis based on complex networks is promising in order to increase the accuracy of the diagnosis of colorectal cancer
|
30 |
Segmentação semiautomática de conjuntos completos de imagens do ventrículo esquerdo / Semiautomatic segmentation of left ventricle in full sets of cardiac imagesTorres, Rafael Siqueira 05 April 2017 (has links)
A área médica tem se beneficiado das ferramentas construídas pela Computação e, ao mesmo tempo, tem impulsionado o desenvolvimento de novas técnicas em diversas especialidades da Computação. Dentre estas técnicas a segmentação tem como objetivo separar em uma imagem objetos de interesse, podendo chamar a atenção do profissional de saúde para áreas de relevância ao diagnóstico. Além disso, os resultados da segmentação podem ser utilizados para a reconstrução de modelos tridimensionais, que podem ter características extraídas que auxiliem o médico em tomadas de decisão. No entanto, a segmentação de imagens médicas ainda é um desafio, por ser extremamente dependente da aplicação e das estruturas de interesse presentes na imagem. Esta dissertação apresenta uma técnica de segmentação semiautomática do endocárdio do ventrículo esquerdo em conjuntos de imagens cardíacas de Ressonância Magnética Nuclear. A principal contribuição é a segmentação considerando todas as imagens provenientes de um exame, por meio da propagação dos resultados obtidos em imagens anteriormente processadas. Os resultados da segmentação são avaliados usando-se métricas objetivas como overlap, entre outras, comparando com imagens fornecidas por especialistas na área de Cardiologia / The medical field has been benefited from the tools built by Computing and has promote the development of new techniques in diverse Computer specialties. Among these techniques, the segmentation aims to divide an image into interest objects, leading the attention of the specialist to areas that are relevant in diagnosys. In addition, segmentation results can be used for the reconstruction of three-dimensional models, which may have extracted features that assist the physician in decision making. However, the segmentation of medical images is still a challenge because it is extremely dependent on the application and structures of interest present in the image. This dissertation presents a semiautomatic segmentation technique of the left ventricular endocardium in sets of cardiac images of Nuclear Magnetic Resonance. The main contribution is the segmentation considering all the images coming from an examination, through the propagation of the results obtained in previously processed images. Segmentation results are evaluated using objective metrics such as overlap, among others, compared to images provided by specialists in the Cardiology field
|
Page generated in 0.1153 seconds