• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 59
  • 23
  • 8
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 698
  • 185
  • 184
  • 154
  • 135
  • 123
  • 103
  • 80
  • 80
  • 64
  • 61
  • 39
  • 38
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

The influence of geological structure on seismicity and rockbursts in the Klerksdorp goldfield

Van der Heever, Paul 21 May 2014 (has links)
M.Sc. (Geology) / Please refer to full text to view abstract
532

A seismically oriented study of mining induced fracturing around deep level gold mine stope

Rorke, Anthony John 10 June 2014 (has links)
M.Sc. (Geology) / Please refer to full text to view abstract
533

Improved 2D and 3D resistivity surveys using buried electrodes and optimized arrays: The multi-electrode resistivity implant technique (MERIT)

Kiflu, Henok Gidey 18 November 2016 (has links)
This thesis presents a novel resistivity method called Multi-Electrode resistivity technique (MERIT) that is used for high resolution imaging of complex geologic features at depth and near the edges of survey lines. The MERIT electrodes are especially shaped and designed to be self-driven using a robust-direct push technique. Measurements are taken using optimized arrays that are generated using a modified version of the “Compare-R” optimization algorithm. This work focused on both two-dimensional (MERIT2D) and three-dimensional (MERIT3D) applications of the buried array and show the relevance of the additional information gained by the addition of deep electrodes especially in sites with limited survey area. Numerical and laboratory studies are used to test and develop the technique and are later applied to image complex subsurface geologic structures on the field. The configuration of MERIT arrays brings some additional problems in terms the sensitivity of the deep MERIT arrays to a problem of non-uniqueness, mis-information, geometric error and resolution break between the two layers of electrodes. Multiple vertical resolution characteristic curves (RC curves) are analyzed to study the effect of array type, resistivity contrast, target resistivity and implant depth on the above-mentioned problems. Results show that MERIT measurements taken using standard dipole -dipole and wenner arrays along the surface and deep electrodes will strongly suffer from the problem of non-uniqueness or ambiguity while measurements taken using optimized arrays is suitable for MERIT configuration and will not suffer from any problem of ambiguity or non-uniqueness. Based on our result, a procedural guideline is developed to determine optimal MERIT implant depth and resolution cutoff that can be used for successful field implementation and for controlling misinformation during data interpretation. Numerical studies involving simple shapes and complex geometries mostly based on actual geological cross-sections from karst environments were used to compare the effectiveness of MERIT2D in terms its high depth resolution and is compared in detail with traditional 2D and 3D surface resistivity methods of equal foot prints. Similar comparison was made between MERIT3D technique and 3D surface resistivity measurements. Results show that both methods achieve high depth resolution compared to their equivalent traditional resistivity methods. Laboratory experiment conducted using a complex analogue model mimicking actual sinkhole structure is used to test MERIT2D. Also laboratory experiment involving a 3D printed plastic cave model mimicking an actual cave was conducted using MERIT3D approach. Both results show the promise of MERIT approach to image and solve complex geological structures or problems. Finally, the method is applied to collect field data in three case study sites involving complex karst related sinkhole structures and an old landfill site. The result shows the promising capability of the MERIT technique to study challenging geologic conditions with high depth resolution.
534

INITIAL MICROSEISMIC RECORDINGS AT THE ONSET OF UNCONVENTIONAL HYDROCARBON DEVELOPMENT IN THE ROME TROUGH, EASTERN KENTUCKY

Holcomb, Andrew 01 January 2017 (has links)
The Cambrian Rogersville Shale is a part of a hydrocarbon system in the Rome Trough of eastern Kentucky and West Virginia that can only be produced unconventionally. In Kentucky, the Rogersville Shale ranges in depth from ~1,800 to ~3,700 m below the surface with the crystalline basement ~1,000 m lower than the formation’s base. Baseline Rome Trough microseismicity data were collected, focusing on wastewater injection wells and recently completed and planned unconventional hydrocarbon test wells in the Rogersville Shale, using thirteen broadband seismic stations installed between June, 2015 and June, 2016 and existing University of Kentucky and central and eastern United States network stations. In addition, the network’s minimum detection threshold, the magnitude at which the theoretical signal exceeds the noise by a factor of 3 between 1 and 20 Hz for at least 4 stations, was estimated for the project area. Thirty-eight local and regional events were located and magnitudes were calculated for each event. No events were proximal to operating disposal or hydrocarbon test wells, nor did any occur in the eastern Kentucky’s Rome Trough. The minimum detection threshold varies between 0.4 and 0.7 Mw from 0000-1100 UTC and 0.6 to 0.9 Mw from 1100-2300 UTC.
535

3D Cave and Ice Block Morphology from Integrated Geophysical Methods: A Case Study at Scărişoara Ice Cave, Romania

Hubbard, Jackson Durain 24 March 2017 (has links)
Scărişoara Ice Cave has been a catalyst of scientific intrigue and effort for over 150 years. These efforts have revealed and described countless natural phenomena – and in the process have made it one of the most studied caves in the world. Of especial interest is the massive ice block located within its Great Hall and scientific reservations. The ice block, which is the oldest and largest known to exist in a cave, has been the focus of multiple surveying and mapping efforts, typically ones utilizing traditional equipment. In this study, the goals were to reconstruct the ice block/cave floor interface and to estimate the volume of the ice block. Once the models were constructed, we aimed to study the relationships between the cave and ice block morphologies. In order to accomplish this goal, three (3) main datasets were collected, processed, and amalgamated. Ground penetrating radar data was used to discern the floor morphology below the ice block. Over 1,500 photographs were collected in the cave and used with Structure from Motion photogrammetry software to construct a texturized 3D model of the cave and ice surfaces. And a total station survey was performed to scale, georeference, and validate each model. Once georeferenced, the data was imported into an ArcGIS geodatabase for further analysis. The methodology described within this study provides a powerful set of instructions for producing highly valuable scientific data, especially related to caves. Here, we describe in detail the novel tools and software used to validate, inspect, manipulate, and measure morphological information while immersed in a fully 3D experience. With this methodology, it is possible to easily and inexpensively create digital elevation models of underground rooms and galleries, to measure the differences between surfaces, to create 3D models from the combination of surfaces, and to intimately inspect a subject area without actually being there. At the culmination of these efforts, the partial ice block volume was estimated to be 118,000 m3 with an uncertainty of ± 9.5%. The volume computed herein is significantly larger than previously thought and the total volume is likely significantly larger, since certain portions were not modeled during this study. In addition, the morphology of ceiling enlargement was linked to areas of high elevation at the base of the ice block. A counterintuitive depression was recognized at the base of the Entrance Shaft. The thickest areas of the ice were identified for future coring projects. And combining all this a new informational allowed us to propose a new theory on the formation of the ice block and to decipher particular speleogenetic aspects.
536

Bayesian source inversion of microseismic events

Pugh, David James January 2016 (has links)
Rapid stress release at the source of an earthquake produces seismic waves. Observations of the particle motions from such waves are used in source inversion to characterise the dynamic behaviour of the source and to help in understanding the driving processes. Earthquakes either occur naturally, such as in volcanic eruptions and natural geothermal fields, or are linked to anthropogenic activities including hydrofracture of gas and oil reservoirs, mining events and extraction of geothermal fluids. Source inversion is very sensitive to uncertainties in both the model and the data, especially for low magnitude, namely microseismic, events. Many of the uncertainties can be poorly quantified, and are often not included in source inversion. This thesis proposes a Bayesian framework enabling a complete inclusion of uncertainties in the resultant probability distribution using Bayesian marginalisation. This approach is developed for polarity and amplitude ratio data, although it is possible to use any data type, provided the noise model can be estimated. The resultant posterior probability distributions are easily visualised on different plots for orientation and source-type. Several different algorithms can be used to search the source space, including Monte Carlo random sampling and Markov chain Monte Carlo sampling. Relative information between co-located events may be used as an extension to the framework, improving the constraint on the source. The double-couple source is the commonly assumed source model for many earthquakes, corresponding to slip on a fault plane. Two methods for estimating the posterior model probability of the double-couple source type are explored, one using the Bayesian evidence, the other using trans-dimensional Markov chain Monte Carlo sampling. Results from both methods are consistent with each other, producing good estimates of the probability given sufficient samples. These provide estimates of the probability of the source being a double-couple source or not, which is very useful when trying to understand the processes causing the earthquake. Uncertainty on the polarity estimation is often hard to characterise, so an alternative approach for determining the polarity and its associated uncertainty is proposed. This uses a Bayesian estimate of the polarity probability and includes both the background noise and the arrival time pick uncertainty, resulting in a more quantitative estimate of the polarity uncertainty. Moreover, this automated approach can easily be included in automatic event detection and location workflows. The inversion approach is discussed in detail and then applied to both synthetic events generated using a finite-difference code, and to real events acquired from a temporary seismometer network deployed around the Askja and Krafla Volcanoes, Iceland.
537

Random Earthquake Response Analysis Of Multiply Supported Nuclear Power Plant Secondary Systems

Ravi, R 01 1900 (has links) (PDF)
No description available.
538

Reliability And Response Uncertainty Analyses Of Piping And Shutdown Systems Of Nuclear Power Plants Under Seismic Loading

Sajish, S D 02 1900 (has links) (PDF)
Earthquake safety engineering of nuclear power plant structures poses several challenges to the analyst and designer. These problems are characterized by highly transient and dynamic nature of earthquake induced excitations, random nature of details of support motions (in terms of duration, frequency content, amplitude modulation, multiple components, and spatial variability), nonlinear nature of structural behavior, geometrical complexity of the primary and a large number of secondary systems (such as, for example, piping, rotors, and machine panels), soil-structure interactions, demands on high level of safety expected of these structures, and general paucity of recorded data on strong ground motions appropriate for the given site. Probabilistic methods offer the most rational framework to base design decisions for this class of problems. The work reported in the present thesis belongs to this broad area of research. We focus attention on studying two classes of nuclear power plant components, namely, a pipework in the heat exchanger segment, and, control and safety rod drive mechanism (CSRDM) and investigate their performance by taking into account complicating features such as differential seismic support motions across multiple supports, nonlinearities at support locations, random nature of dynamic loads and uncertainties in system parameters. Response measures include peak responses, reliability against specified performance criterion, measures of uncertainties in response variables of interest. Chapter-1 provides the functional details of nuclear power plant structures that includes reactor assembly and heat transport system assembly, CSRDM, heat transfer piping networks, and nonlinear supporting devices (such as rod, spring, guide supports, limiters, and snubbers). The discussion brings out the structural mechanics issues that need attention while analyzing seismic response of some of these components. Chapter-2 provides a brief review of literature covering the following topics: Monte Carlo simulation based methods for static and dynamic reliability analysis problems, digital simulation of random variables and processes, treatment of non-Gaussianity in simulations, strategies for variance reduction, models for uncertainty in response using limited samples, data based extreme value analysis, studies on multi-supported piping networks under differential seismic inputs and seismic performance of CRDM structures. The study identifies specific issues related to numerical simulation of nonlinear dynamic response of multisupported pipeworks to differential seismic inputs, uncertainty propagation and reliability modeling in seismic response of pipeworks and CSRDM using Monte Carlo simulations with variance reduction, data based extreme value analysis, and uncertainty propagation using limited samples as topics requiring further research. The problems of numerical simulation of nonlinear multisupported piping systems subjected to differential seismic support motions and drop time characterization of CSRDM structure during a seismic event are considered in Chapter-3. It is noted that commercially available professional finite element analysis (FEA) softwares do not offer a direct means to tackle this class of problems. On the other hand, FEA packages are best suited to produce acceptable FE models which take into account the geometrical complexities of the structures. Thus, the reasonable way to move forward would be to develop external interfaces that take advantage of FE modeling capabilities of professional packages and at the same time enable treatment of complexities associated with differential support motions, nonlinearities and axial rigid motions of subsystems as in CSRDM. The work reported in Chapter-3 describes the efforts expended in achieving this objective. Here the given built-up structure is divided in to a set of linear substructures each of which are modeled using FE analysis procedures. The proposed scheme allows for these FE models to reside in professional FE analysis codes. An iterative time domain scheme for modeling the interaction forces between these substructures is discussed. The set of governing equations of motion are developed in terms of normal modes of substructures in their uncoupled states. A suite of benchmark problems are first employed to validate the procedure developed. Subsequently, the earthquake induced dynamic response of CSRDM structure and the pipeline running between IHX and secondary sodium pump in a typical fast breeder reactor is simulated. The algorithm for simulation of dynamic response of CSRDM and multi-supported pipelines under differential support motions developed in Chapter-3 is employed in Chapter-4 to investigate the questions concerning influence of uncertainties in specifying the loads and the system parameters on the system response. Specifically, the study focuses on quantifying uncertainty in system response characteristics based on limited number of Monte Carlo simulations of the response. For this purpose we draw upon an earlier work by Wilks which specifies the number of samples needed to estimate γ th percentile point of a random variable with β level of confidence. We explore in this Chapter, the application of this idea in the analysis of nonlinear, randomly parametered, dynamical systems under stochastic excitations. In Chapter-5 we turn our attention to the modeling of aseismic reliability of the nonlinear pipework under differential support motions and the CSRDM structure. The performance functions considered for the piping structure are in terms of highest displacements and stresses over a specified time durations while for CSRDM, the performance function is in terms of scram time being less than a specified time duration. We tackle the first problem by using theory of data based extreme value analysis while the second problem is addressed using an adaptive importance sampling strategy. The contributions here pertain to the exploration of data based extreme values analysis as applied to an industrial scale structure and improvisation of algorithmic modifications in the development of adaptive importance sampling density functions. This improvisation consists of selection of sampling points as a judicious mix of points from both safe and unsafe regions. This is shown to reduce the strong correlations that otherwise would be present if samples are taken only from the unsafe region. These studies demonstrate how Monte Carlo simulations with limited samples can be utilized to draw useful conclusions on structural reliability. Chapter-6 summarizes the main contributions made in the thesis and makes a few suggestions for further research. There are five annexures in the thesis. Annexure-1 contains listing of Matlab m-files used for solving illustrative problems in Chapter-2. The details of FE modeling of multisupported system under differential support motions and the details of substructuring scheme used in modeling of such systems with local nonlinearities are provide in Annexure-2. The details of material and geometry of CSRDM structure are provided in Annexure-3. Annexure-4 summarizes the main details of hypothesis tests used in data based extreme value analysis. The algorithms used for converting response spectra into compatible power spectral density functions are described in Annexure-5.
539

The crustal structure of the northern Juan de Fuca plate from multichannel seismic reflection data

Hasselgren, Elizabeth January 1991 (has links)
The crustal structure of a young (<10 My) ocean basin is imaged by two multichannel seismic reflection lines comprising 230 km recorded over the central part of the northern Juan de Fuca plate off western Canada. The more northerly line ties previously interpreted deep seismic reflection lines across the Juan de Fuca ridge and the Cascadia subduction zone; the southern line ties with another interpreted line across the subduction zone. Both lines trend obliquely to the spreading direction. A marine refraction profile crossing the eastern end of the lines provides velocity constraints. The processing sequence applied to the data includes a prestack inside-trace mute of CMP gathers to reduce noise levels on the deep data, CMP stack, post-stack dip filtering, f-k migration and bandpass. Coherency-filtered stacks are helpful in tracing weaker reflectors. The stacked sections reveal a horizontally layered sedimentary sequence overlying a rugged and prominent basement reflector dipping slightly landward. A strong, fairly continuous reflection from the base of the crust at about 2 s two-way-time below the basement surface generally mimics the basement topography and shows the characteristic doubling and tripling of reflections seen in other similar surveys. Although in general the crust appears acoustically transparent, weaker, discontinuous intracrustal reflectors are observed over 40 km at the eastern end of the northern line, and are interpreted to arise from the oceanic Layer 3A/3B and Layer 2/3 boundaries. The im-persistence of these reflectors is an indication of the complexity of the processes producing intracrustal reflectivity, and an indication of the lateral variability of crustal formation. Pseudofault traces of propagating rifts are crossed at three different locations on the two lines, the first MCS crossings of such structures. Crust associated with the pseudofault traces is related to both subhorizontal and dipping subcrustal events which are interpreted as zones of crustal thickening or underplating. Although the crustal thickness elsewhere on the lines varies by only about 10%, crust associated with the pseudofaults is as much as about 25% thicker than average, suggesting that magma supply at transform-type offsets may at times be large. A small seamount discovered on the southern line may result from the excessive magma production at the ridge postulated at propagating rift zones. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
540

A re-evaluation of the seismic structure across the active subduction zone of Western Canada

Drew, Jeffrey John January 1987 (has links)
The 1980 Vancouver Island Seismic Project (VISP) was conducted to investigate lithospheric structure associated with the underthrusting oceanic Juan de Fuca plate and the overriding continental America plate. The principal components of the survey were: (l) an onshore-offshore refraction line, which was approximately perpendicular to the continental margin (line 1), and (2) a refraction line which ran along the length of Vancouver Island approximately parallel with the continental margin (line IV). Lines I and IV were originally interpreted by Spence el a.1. (1985) and McMechan and Spence (1983), respectively. However since the original interpretations of these lines, deep multichannel seismic reflection data have been obtained on southern Vancouver Island as part of the 1984 LITHOPROBE project and off the west coast of the island during a marine survey in 1985. This study was undertaken to resolve differences between the subsurface structures proposed in the original interpretations of lines I and IV and those suggested by the more recently acquired deep reflection data. The vertical two-way traveltimes to prominent reflectors, observed in the onshore-offshore deep reflection data, were used as a constraint in constructing velocity models which are consistent with both the reflection and refraction data. The traveltimes and amplitudes observed in the VISP refraction data were modeled using a two-dimensional raytracing and asymptotic ray theory synthetic seismogram routine. The principal difference between the model originally interpreted for line I and the revised model involves the introduction of a twice repeated sequence of a low velocity zone (≈ 6.4 km/s) above a thicker high velocity zone (≈ 7.1 km/s) for the underplated region directly above the subducting Juan de Fuca plate in place of the single high velocity block underlain by a thick low velocity zone. The revised model for line IV is significantly different from the originally interpreted model. The two low-high velocity zones of line 1 are continued along the length of the island at depths between 10 and 35 km. Below this, the structure of the subducted plate is included to maintain consistency with the revised model developed for line 1. Additional features of the revised onshore-offshore model corresponding to line 1 include an oceanic lithosphere that dips approximately 3° beneath the continental slope, then 14° to 16° beneath the continental shelf and Vancouver Island, and an average velocity for the upper oceanic mantle of 8.22 km/s. Two separate two-dimensional models were needed to explain the data collected along line IV as a result of considerable azimuthal coverage due to a 30° change in profile direction. The revised models developed for line IV are consistent with the revised model developed for line 1. The velocity in the upper 10 km ranges from 5.5 km/s to approximately 6.7 km/s. Below 10 km the velocity structure is consistent with that interpreted for line 1 and shows some variations along strike of the subduction zone. Several possible interpretations can be made for the origin of the sequence of layers directly above the subducting plate beneath Vancouver Island. The two favored interpretations are: (1) a. three stage tectonic process consisting of: stage 1 — offscraping of sediment from the top of the subducting plate forms the uppermost low velocity layer in the sequence; stage 2 — an imbricated package of mafic rocks derived by continuous accretion from the top of the subducting oceanic crust forms the first high velocity layer; and stage 3 — stages 1 and 2 repeat themselves with stage 2 currently occurring; or (2) remnant, pieces of oceanic lithosphere left stranded above the current subducting plate during two previous episodes of subduction in which the subduction thrust jumped further westward isolating the remnant. The revised model along line IV indicates that this process of subduction underplating could have been a pervasive feature of this convergent margin. / Science, Faculty of / Physics and Astronomy, Department of / Graduate

Page generated in 0.0477 seconds