• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solvatation du thorium par les fluorures en milieu sel fondu à haute température : application au procédé d'extraction réductrice pour le concept MSFR / Actinide/lanthanide separation in molten salt media : application to the MSFR fuel reprocessing

Rodrigues, Davide 04 December 2015 (has links)
Le réacteur à sels fondus rapides (MSFR) est un des six concepts de réacteur nucléaire retenu lors du Forum Génération IV en 2001. La particularité de ce concept est d'utiliser un combustible liquide constitué d'un sel fondu, LiF-ThF₄-UF₄/UF3₃ (77-19-4 mol%) et d'intégrer un procédé de traitement du sel usé. Ce traitement est constitué d'étapes successives de séparation chimiques basées sur les propriétés redox et acido-basiques des éléments produits dans le réacteur par des réactions nucléaires : produits de fission solubles et gazeux, éléments métalliques et actinides mineurs solubles. L'une des étapes majeures du procédé de traitement est une extraction réductrice qui consiste à mettre en contact le sel fondu et un métal liquide, le bismuth, contenant un élément réducteur, le lithium. Cette étape permet notamment de séparer les actinides mineurs des lanthanides. Les actinides mineurs sont réintroduits dans le réacteur nucléaire afin d'y être brûler alors que les lanthanides seront confinés en stockage profond.Le travail réalisé au cours de cette thèse avait deux objectifs : (i) vérifier la faisabilité de l'extraction réductrice des actinides et des lanthanides, étape qui avait été validée au préalable uniquement sur la base de calculs thermodynamiques et (ii) étudier la chimie des sels fluorures fondus (et notamment le sel combustible LiF-ThF₄-UF₄) en développant une méthodologie pour la détermination de données fondamentales telles que les coefficients d'activité dans les milieux fluorures, coefficients qui quantifient les propriétés de solvatation.La première étape pour réaliser expérimentalement une extraction réductrice consiste à préparer une nappe métallique de Bi-Li liquide de composition pré-définie. Une technique d'électrolyse en milieu LiCl-LiF fondu à 550°C a été retenue pour réaliser ces solutions métalliques. Nous avons montré que seul ce milieu fondu pouvait être utilisé pour la fabrication de ces alliages métalliques. Des tests d'extraction ont ensuite été réalisés par contact entre LiF-ThF₄ (dans lequel sont introduits UF₄ et NdF ₃ pour simuler respectivement les actinides et les lanthanides) et Bi-Li à 650°C. Les principaux résultats montrent que l'extraction du néodyme et de l'uranium a été obtenue avec des rendements respectivement de l'ordre de 3% et 15% dans les meilleures conditions. Ces valeurs sont faibles comparées aux calculs thermodynamiques prévisionnels. On explique la faible efficacité de l'extraction par une extraction simultanée du thorium dans la nappe métallique liquide qui forme des composés intermétalliques à l'interface métal/sel et bloque le transfert interphasique. Des méthodes ont été développées pour atteindre des données fondamentales qui font défaut en milieu fluorures fondus, en particulier les propriétés de solvatation. La spéciation de plusieurs cations métalliques par les ions fluorures à haute température a notamment été étudiée et les constantes de complexation calculées par simulation des résultats expérimentaux. Réalisée pour deux lanthanides, le néodyme et le lanthane, deux actinides, le thorium et l'uranium et également pour un métal de transition, le nickel, cette étude permet d'atteindre les coefficients d'activité de ces éléments dans tous les sels fluorures fondus. En particulier, l'étude de la spéciation du thorium a été une étape importante dans la connaissance de la chimie du sel combustible LiF-ThF₄ puisque nous avons pu en déduire le coefficient d'activité de l'ion fluorure dans ce milieu à 650°C.Enfin, l'ensemble de ce travail a conduit à donner une première estimation de la réactivité de chaque élément de la classification périodique (présent dans le réacteur nucléaire après opération) à chaque étape du traitement du sel combustible usé. / The molten salt fast reactor (MSFR) is one of the six nuclear reactor concepts retained during the Forum GEN IV in 2001. The particularity of this concept is to use a liquid fuel consisting of a molten salt, LiF-ThF₄-UF₄ /UF ₃ (77-19-4 mol%) and to have an integrated spent fuel treatment process. This treatment consists of successive chemical separation steps based on redox and acid-base properties of the elements produced in the reactor by nuclear reactions: soluble and gaseous fission products, metals elements and soluble minor actinides. One of the major steps of the treatment method is a reducing extraction which consists to contact the molten salt and a liquid metal, bismuth, containing the reducing element, lithium. This step allows separating the minor actinides and lanthanides. Minor actinides are reintroduced in the nuclear reactor to be burned while the lanthanides are confined in deep storage.The work in this thesis had two objectives: (i) assess the feasibility of reducing extraction of actinides and lanthanides, a step that had previously only been validated on the basis of thermodynamic calculations and (ii) study the chemistry of molten fluoride salts (and especially the fuel salt) by developing a methodology for the determination of fundamental data such as the activity coefficients in fluorides media, coefficients activities which quantify the solvation properties.To experimentally realize a reducing extraction, the first step is to prepare a metal layer of liquid Bi-Li with predefined composition. An electrolysis technique in molten salt LiCl-LiF at 550°C was chosen to achieve these metal solutions. We have shown that only this molten medium could be used for the manufacture of such metal alloys. Extraction tests were then carried out by contact between LiF-ThF₄ (with UF₄ and NdF ₃ are introduced to simulate respectively the actinides and lanthanides) and Bi-Li at 650°C. The main results show that the extraction of neodymium and uranium was obtained with yields of around 3% and 15% respectively in the best conditions. These values are low compared to previous thermodynamic calculations. Low efficiency of the extraction is due to a simultaneous extraction of thorium in the liquid metal phase which forms intermetallic compounds at the metal/salt interphase and blocks the transfer.Methods have been developed to achieve fundamental data that are lacking in molten fluoride medium, in particularly the solvation properties. Speciation of some metallic cations by fluoride ions with high temperature was particularly studied and calculation of complexation constants by simulated experimental results was done. Carried out for two lanthanides, neodymium and lanthanum, two actinides, thorium and uranium, and also for a transition metal, nickel, this study achieves to calculate the activity coefficients of these elements in different fluoride molten salt. The study of the speciation of thorium was an important step to understand the chemistry of the fuel salt LiF-ThF₄. We were able to calculate the activity coefficient of the fluoride ion in this environment at 650°C.Finally, all of this work allows giving a first estimate of the reactivity of each element of the periodic table (present in the nuclear reactor after operation) at each stage of the treatment of the spent fuel salt.
2

Étude du comportement de l’uranium et de l’iode dans le mélange de fluorures fondus LiF-ThF₄ à 650 °C / Study of uranium and iodine behavior in the molten fluorides LiF-ThF₄ at 650 ° C

Durán-Klie, Gabriela 25 September 2017 (has links)
Le Réacteur Nucléaire à sel fondu à spectre rapide (Molten Salt Fast Reactor, MSFR) est un concept innovant de quatrième génération développé par le CNRS depuis 2004 et actuellement étudié dans le cadre du projet européen SAMOFAR de H2020. Le MSFR fonctionne avec un combustible nucléaire liquide constitué d’un mélange de sels fluorures LiF-ThF₄-(UF₄/UF₃) (77,5-20-2,5) mol% fondus à haute température (700-900°C). Ce réacteur est particulièrement intéressant pour le cycle de combustible du thorium (²³²Th-²³³U). Ce concept propose un retraitement intégré du combustible nucléaire basé sur des méthodes pyrochimiques afin d’extraire la matière fissile et de séparer les actinides des produits de fission.Un schéma de traitement du sel combustible, proposé lors d’un précédent projet européen (EVOL, FP7), est basé sur les propriétés redox et acido-basiques des éléments produits par les réactions de fission et de capture ayant lieu dans le cœur du réacteur. La base d’évaluation de ce schéma a été dans un premier temps thermodynamique. Une validation expérimentale est actuellement en cours qui consiste à étudier le comportement chimique et électrochimique du sel fondu et des éléments qui y sont solubilisés. Les études précédentes sur les réacteurs sels fondus ne peuvent être utilisées que partiellement pour ce concept car la composition du sel du MSFR définie par le projet européen EVOL est différente en nature et composition des sels proposés jusqu’à présent pour ce type de réacteurs. Or, les coefficients de diffusion et d’activité dépendent des propriétés physico-chimiques du sel fondu (en particulier de la solvatation) et nous avons, lors d’études précédentes, montré que les propriétés de solvatation des sels fondus dépendent fortement de leur nature et de leur composition.Les objectifs de ce travail de thèse sont l’étude du mélange fondu LiF-ThF₄ et du comportement électrochimique de l’uranium et de l’iode dans ce mélange.L’étude électrochimique du comportement de l’uranium a montré la stabilité de deux espèces solubles (UF₄ et UF₃) de cet élément dans le milieu fondu et la possibilité de le réduire à l’état métallique. Ce point est d’importance car la co-existence de ces deux composés permettra de contrôler le potentiel du sel combustible dans le cœur du réacteur et de limiter les réactions de corrosion avec les matériaux de structure. Les coefficients d’activité de U(IV) et de U(III) ont été déterminés. Les valeurs obtenues montrent que la solvatation de l’uranium au degré d’oxydation (IV) par les ions fluorure est beaucoup plus importante que celle de l’uranium au degré (III), ce qui est en accord avec des observations ultérieures dans d’autres sels fluorures. Notre choix pour l’étude des produits de fission dans le sel combustible s’est porté sur l’iode. Dans le cœur du réacteur, la forme stable de l’iode est la forme halogénure soluble I- et dans le schéma général de traitement du sel combustible, il est prévu d’extraire l’iode par une étape de fluoration qui permet de produire le gaz I₂. Cette étude a montré la contribution d’une réaction chimique à l’oxydation des ions iodures en iode gazeux. Cette réaction chimique d’oxydo-réduction correspond à l’oxydation des ions iodures par l’oxygène. Cette réaction n’est expliquée que par l’existence d’un oxyfluorure de thorium soluble ThOF₂. Une efficacité d’extraction de I₂ (g) supérieure à 95 % a été obtenue par électrolyse à potentiel contrôlé. Ces électrolyses, qui simulent la fluoration, permettent de valider l’étape d’extraction de l’iode dans le schéma de traitement.Ce travail de recherche a permis d’acquérir une meilleure connaissance de la stabilité du sel et du comportement chimique et électrochimique de différents composés (U et I) dans le sel. / The Molten Salt Fast Reactor (MSFR) is an innovative concept of GEN IV developed by the CNRS since 2004. It is currently studied in the framework of the European project SAMOFAR of H2020. The MSFR operates with a liquid nuclear fuel consisting of a mixture of fluoride salts LiF-ThF₄- (UF₄ / UF₃) (77.5-20-2.5) mol% melted at high temperature (700-900° C). This reactor is particularly advantageous for the thorium fuel cycle (²³²Th-²³³U). This concept proposes an integrated reprocessing of the nuclear fuel based on pyrochemical methods in order to extract the fissile material and to separate the actinides from the fission products.A scheme for the treatment of the fuel salt, proposed in a previous European project (EVOL, FP7), is based on the redox and acido-basic properties of the elements produced by the fission and capture reactions occurring in the reactor core. The baseline for this scheme was initially thermodynamic. Experimental validation is currently under way to study the chemical and electrochemical behavior of the molten salt and the elements solubilized therein. Previous studies on molten salt reactors can only be partially used for this concept because the composition of the MSFR salt defined by the European EVOL project is different from the composition of the salts proposed up to now for this type of reactor. However, the diffusion and activity coefficients depend on the physicochemical properties of the molten salt (in particular solvation) and in previous studies we have shown that the solvation properties of molten salts are strongly dependent on their nature and their composition.The objectives of this thesis are the electrochemical characterization of the molten mixture LiF-ThF₄ and the study of the electrochemical behavior of uranium and iodine.The electrochemical study of the behavior of uranium shows the stability of two soluble species (UF₄ and UF₃) of this element in the molten medium and the possibility of its reduction to the metallic state. This point is important because the co-existence of these two compounds will make possible to control the potential of the fuel salt in the core of the reactor in order to limit the corrosion reactions with the structural materials. The activity coefficients of U (IV) and U (III) were determined. The values obtained show that the solvation of uranium to the degree of oxidation (IV) by fluoride ions is much greater than that of uranium to degree (III), which is in agreement with subsequent observations in other fluoride salts.Our choice for the study of fission products in the fuel salt has focused on iodine. In the core of the reactor, the stable form of the iodine is the soluble halide form I- and in the general scheme of treatment of the fuel salt, it is planned to extract iodine by a fluorination step in order to produce the gaseous compound I₂. The electrochemical study shows the contribution of a chemical reaction to the electrochemical oxidation of iodide ions in gaseous iodine. This redox chemical reaction corresponds to the oxidation of the iodide ions by oxygen. This reaction is explained for the existence of a soluble thorium oxifluoride ThOF₂. Extraction efficiencies of I₂ (g) greater than 95% were obtained by electrolysis at controlled potential. These electrolysis, which simulate fluorination process, make it possible to validate the method for the extraction of the iodine in the reprocessing scheme.This research has led to a better understanding of salt stability and of the chemical and electrochemical behavior of several compounds (U and I) in the molten salt.
3

Cycle thorium et réacteurs à sel fondu. Exploration du champ des paramètres et des contraintes définissant le "Thorium Molten Salt Reactor"

Mathieu, Ludovic 26 September 2005 (has links) (PDF)
Le recours à l'énergie électronucléaire pour diminuer les émissions anthropiques de CO2 nécessite des avancées technologiques majeures. Les réacteurs nucléaires de IVe génération doivent répondre à plusieurs contraintes, telles qu'une sûreté améliorée, la régénération du combustible et la minimisation de la production de déchets radioactifs. De ce point de vue, l'utilisation du Cycle Thorium en Réacteurs à Sel Fondu semble prometteuse. Cet axe de recherche, étudié dans le passé, avait cependant débouché sur un concept dont les défauts ont empêché la réalisation. Une nouvelle réflexion est menée afin de trouver des solutions et d'aboutir au concept de Thorium Molten Salt Reactor. Le couplage d'un code de transport de neutrons avec un code d'évolution des matériaux permet de simuler le comportement d'un coeur nucléaire, et de suivre son évolution tout au long de sa vie. Par cette méthode, nous avons étudié un large éventail de configurations de réacteurs. Les performances de ces systèmes ont été évaluées, grâce à un jeu de contraintes qu'ils doivent satisfaire au mieux. Ce travail a permis de comprendre bon nombre de phénomènes physiques régissant le comportement de ces réacteurs. Grâce à cette nouvelle compréhension, la recherche de configurations acceptables a pu aboutir à des solutions satisfaisantes, apportant un souffle nouveau dans le domaine des Réacteurs à Sel Fondu.
4

Analyse Comparative du Fonctionnement et de la Sûreté de Systèmes Sous-critiques et de Réacteurs Critiques Innovants

Bokov, Pavel M. 02 May 2005 (has links) (PDF)
L'objectif de ce travail de thèse est d'examiner le rôle de la sous-criticité du coeur, en tant que moyen pour améliorer la sûreté des systèmes nucléaires innovants, notamment des réacteurs à sel fondu, dédiés à la production d'énergie et/ou à la transmutation/incinération des déchets nucléaires. La sûreté intrinsèque est considérée comme l'objectif ultime de cette amélioration. Une tentative d'appliquer une approche systématisée pour l'analyse de la contribution de la sous-criticitité au comportement intrinsèque des systèmes hybrides est effectuée. Les résultats de cette étude prouvent que la sous-criticité améliore bien la sûreté des réacteurs nucléaires, et même, dans certaines configurations, permet d'attendre la sûreté intrinsèque. Dans tous les cas, un choix approprié du niveau de sous-criticité rend les transitoires plus lents et monotones. Il est montré que le point faible pour des systèmes hybrides avec une source indépendante de neutrons sont les transitoires thermo-hydrauliques non protégés tandis que pour des hybrides avec des sources couplées ce sont les transitoires de réactivité. Pour surmonter les inconvénients intrinsèques à ces deux types de systèmes hybrides, un nouveau principe de réalisation des systèmes hybrides couplés est proposé (concept DENNY). De plus, des approches, qui permettent de remédier à certains problèmes de sûreté, sont proposées. Une analyse préliminaire du potentiel de sûreté intrinsèque pour un réacteur à sel fondu avec spectre rapide (concept REBUS) est effectuée. Enfin, le potentiel des sources alternatives de neutrons basées sur des réactions thermonucléaires et photo-nucléaires est examiné.

Page generated in 0.0668 seconds