• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Getriebene Nanosysteme: Von stochastischen Fluktuationen und Transport zu selbstorganisierten Strukturen / Driven nanosystems: From stochastic fluctuations and transport to self-organized pattern

Einax, Mario 07 October 2013 (has links)
Aufgrund des weltweiten Trends zur Miniaturisierung, u. a. von elektronischen Bauteilen, von Sensoren, von Speichermedien, oder bei der gezielten Funktionalisierung von Nanopartikeln als Kontrastmittel in bildgebenden medizinischen Verfahren, nimmt die Erforschung von Nanosystemen eine interdisziplinäre Schlüsselrolle ein. Ein grundlegendes physikalisches, chemisches und biologisches Verständnis von Nanosystemen auf Grundlage von experimentellen und theoretischen Untersuchungen steht dabei ebenso im Fokus wie die konzeptionelle Entwicklung geeigneter Nanotechnologien zur kontrollierten Herstellung von Nanostrukturen über „bottom-up“ und „top-down“ Strategien. Getriebene Nanosysteme befinden sich fern vom thermischen Gleichgewicht. Zur ihrer Beschreibung gibt es bisher keine allgemein ausgearbeitete Theorie. Dies hat zur Konsequenz, dass getriebene Nanosysteme problemspezifisch modelliert und untersucht werden müssen. Die vorliegende Schrift ist in drei Themengebiete unterteilt: (i) konzeptionelle Beschreibung stochastischer Fluktuationen der Arbeit und der Wärme im Rahmen der stochastischen Thermodynamik, (ii) konzeptionelle Beschreibung von Vielteilchen-Transportproblemen mit repulsiven Nächste-Nachbarwechselwirkungen auf Grundlage der klassischen zeitabhängigen Dichtefunktionaltheorie und (iii) selbstorganisiertes Wachstum von metallischen und organischen Nanostrukturen.

Page generated in 0.0503 seconds