• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electroplating of selective surfaces for concentrating solar collectors

Zäll, Erik January 2017 (has links)
The optical properties of the absorber pipe in a parabolic trough collector isessential for the performance of the solar collector. The desirable propertiesare high absorptance (α) of solar radiation and low emittance (ε) of thermalradiation. A surface with these properties is known as a solar selective surface. There are several techniques used to produce selective surfaces, but one of the most common ones is electroplating. Research done by Vargas, indicates that optical properties of α = 0.98 and ε = 0.03 [1], which is superior to the best commercial alternatives (α = 0.95 and ε = 0.04 [2]), can be achieved by electroplating a Co-Cr coating on a stainless steel substrate. Additionally, Vargas used an electrolyte of trivalent chromium dissolved in a deep eutectic solvent, as opposed to the traditionally used aqueous electrolytes containing hexavalent chromium, which is toxic and carcinogenic. In this project, a coating of Co-Cr was electroplated on a stainless steel substratewith a method similar to that of Vargas in order to obtain a solar selective surface. The electrolyte was composed of ethylene glycol, choline chloride, CrCl3•6H2O and CoCl2•6H2O in a molar ratio of 16:1:0.4:0.2. The plating process was conducted using chronoamperometric electrodeposition with an applied potential of -1.2 V (against an Ag/AgCl reference electrode) for 15 min. The system was investigated using Cyclic Voltammetry (CV). The total absorptance was measured using UV-Vis spectroscopy, while the emittance was measured using an IR-thermometer. The microstructure and chemical composition was investigated using Scanning ElectronMicroscopy (SEM), Focused Ion Beam (FIB), Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy. The thermal stability of the coating was investigated by exposingit to 400°C in air for 24 h. The electroplated coating is approximately 2.8 μm thick and exhibits a porousstructure with a surface of fine fiber-like flakes. The coating consists largely of Co hydroxides with low concentrations of Cr compounds, Co oxides and metallic Co. Hence, a satisfactory co-deposition was not accomplished, as the Cr concentration is low. The coating is not thermally stable up to 400°C, exhibiting signs of at least partially melting in the annealing process. The compounds in the coating were largely oxidized in the process. The electroplated surface does however exhibits strong selectivity, with a total solar absorptance of α = 0.952 and total emittance of ε = 0.32 at 160°C.
2

Optimizing a Parabolic Solar Trough's Receiver with an IR Selective Coating

Riahi, Adil 01 January 2020 (has links)
Parabolic solar trough receivers are used to collect heat via the mean of a heat transfer fluid. This component is one among a myriad of the Concentrated Solar Power (CSP) devices. Parabolic troughs reach high temperatures around 400 ºC. improving the Parabolic Solar Trough's receiver with an IR selective coating will increase the heat transfer absorbed by the heat transfer fluid and reduce the radiative heat loss. Thus, optimizing the receiver will ameliorate the efficiency of the electrical production for a CSP. The parabolic solar receiver existing in industry currently are made of stainless steel with no specific coating for IR solar rays spectrum selection. Therefore, the heat transferred through the absorber is limited to certain light spectrum. Furthermore, numerous receivers proposed are made from materials that contaminates their optical properties when oxidized such as aluminum [1]. The heat transfer and optical analysis of the PTC are essential to optimize and understand its performance under high temperatures and reduce the heat loss. In this paper, our focus is on presenting a super-lattice IR selective coating to minimize the radiative heat loss. Making use of the power of metamaterials to confection optical properties that are inexistent in nature, the coating will serve to maximize the tube's reflectance above 70% in the IR. Not only does the selective coating enhance the optical properties of the receiver, but also it ensures performance stability for high temperatures.
3

Investigations on Multiscale Fractal-textured Superhydrophobic and Solar Selective Coatings

Jain, Rahul 21 August 2017 (has links)
Functional coatings produced using scalable and cost-effective processes such as electrodeposition and etching lead to the creation of random roughness at multiple length scales on the surface. The first part of thesis work aims at developing a fundamental mathematical understanding of multiscale coatings by presenting a fractal model to describe wettability on such surfaces. These surfaces are described with a fractal asperity model based on the Weierstrass-Mandelbrot function. Using this description, a model is presented to evaluate the apparent contact angle in different wetting regimes. Experimental validation of the model predictions is presented on various hydrophobic and superhydrophobic surfaces generated on several materials under different processing conditions. Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been severely limited by their poor mechanical durability and longevity. Toward addressing this gap, the second and third parts of this thesis work present low cost, facile processes to fabricate superhydrophobic copper and zinc-based coatings via electrodeposition. Additionally, systematic studies are presented on coatings fabricated under different processing conditions to demonstrate excellent durability, mechanical and underwater stability, and corrosion resistance. The presented processes can be scaled to larger, durable coatings with controllable wettability for diverse applications. Apart from their use as superhydrophobic surfaces, the application of multiscale coatings in photo-thermal conversion systems as solar selective coatings is explored in the final part of this thesis. The effects of scale-independent fractal parameters of the coating surfaces and heat treatment are systematically explored with respect to their optical properties of absorptance, emittance, and figure of merit (FOM). / Master of Science / Coatings are extensively used through various industries and serve a range of purposes such as providing protection, changing the physical and chemical properties, decoration, and adding other new properties to the base surface. Coatings produced using scalable and cost-effective processes such as electrodeposition and etching are inherently rough and have features ranging from micro- to nano-scale, leading to their multiscale nature. The first part of thesis work aims at developing a fundamental mathematical understanding of these rough coatings by presenting a model to describe and predict the wettability on such surfaces. Wettability of a surface is its ability to maintain contact with a liquid, resulting from intermolecular interactions when the two are brought together. Wettability for a solid surface is generally quantified by the contact angle, measured through the liquid, where a liquid-vapor interface meets the solid surface. A mathematical model is presented to evaluate the apparent contact angle on such multiscale rough surfaces. Experimental validation of the model predictions is presented on various hydrophobic and superhydrophobic surfaces generated on several materials under different processing conditions. Superhydrophobic surfaces do not get wet by water and water droplet contact angle on these surfaces exceed 150°. Such surfaces have extensive industrial applications, yet their practical utilization has been severely limited by their poor mechanical durability and longevity. Toward addressing this gap, the second and third parts of this thesis work present low cost, facile processes to fabricate superhydrophobic copper and zinc-based coatings via electrodeposition. Additionally, systematic studies are presented on coatings fabricated under different processing conditions to demonstrate excellent durability, mechanical and underwater stability, and corrosion resistance. The presented processes can be scaled to larger, durable coatings with controllable wettability for diverse applications. Apart from their use as superhydrophobic surfaces, the application of multiscale coatings in photo-thermal conversion systems as solar selective coatings is explored in the final part of this iv thesis. Solar selective coatings aim to improve photo-thermal conversion efficiency by providing a high solar absorptance and low thermal emittance. Solar selective coatings ensure that maximum incoming solar radiation is absorbed into the surface and radiative losses due to emissions at high temperatures are minimized. The effects of scale-independent mathematical parameters of the coating surfaces and heat treatment are systematically explored with respect to their optical properties of absorptance, emittance, and figure of merit (FOM).

Page generated in 0.4271 seconds