Spelling suggestions: "subject:"dielective deposition"" "subject:"dielective ceposition""
1 |
Lithography Using an Atomic Force Microscope and Ionic Self-assembled MultilayersAbdel Salam Khalifa, Moataz Bellah Mohammed 06 March 2015 (has links)
This thesis presents work done investigating methods for constructing patterns on the nanometer scale. Various methods of nanolithography using atomic force microscopes (AFMs) are investigated. The use of AFMs beyond their imaging capabilities is demonstrated in various experiments involving nanografting and surface electrochemical modification. The use of an AFM to manipulate a monolayer of thiols deposited on a gold substrate via nanografting is shown in our work to enable chemical modification of the surface of the substrate by varying the composition of the monolayer deposited on it. This leads to the selective deposition of various polymers on the patterned areas. Conditions for enhancing the selective deposition of the self-assembled polymers are studied. Such conditions include the types of polymers used and the pH of the polyelectrolyte solutions used for polymer deposition. Another method of nanolithography is investigated which involves the electrochemical modification of a monolayer of silanes deposited on a silicon substrate. By applying a potential difference and maintaining the humidity of the ambient environment at a certain level we manage to change the chemical properties of select areas of the silane monolayer and thus manage to establish selective deposition of polymers and gold nanoparticles on the patterned areas. Parameters involved in the patterning process using surface electrochemical modification, such as humidity levels, are investigated. The techniques established are then used to construct circuit elements such as wires. / Ph. D.
|
2 |
Site-Specific Metallization of Multiple Metals on a Single DNA Origami TemplateUprety, Bibek 28 November 2012 (has links)
This work examines the selective deposition of two different metals on the same DNA origami template for nanofabrication. DNA, with adjustable size and shape serves as a suitable template for fabricating metal junctions in the nanometer domain via bottom-up assembly. Bottom-up assembly utilizes the recognition capability of molecules like DNA to self-assemble and form structures. In this regard, DNA origami provides a useful means for forming nanostructures by folding single-stranded DNA into different two and three dimensional shapes. Selective deposition of metal on specific locations of a DNA template is essential for making DNA-templated electronic circuits.Site-specific metallization of DNA origami templates was recently demonstrated, for a single metal at molecularly designated sites. This study addresses the next important step of depositing multiple metals on the same template. Specifically, it is an experimental study to demonstrate the gold-copper metal junction on a DNA origami template, and to understand the challenges associated with junction fabrication. DNA-templated circuit fabrication depends on the ability to deposit multiple components on a DNA template. To achieve this, a section of the DNA template was seeded with Au nanoparticles and electrolessly plated with Au. This Au plated section of the template was then masked with an organic layer to protect it from additional deposition. The remaining section of the same template was subsequently seeded with Pd and plated with copper to form the desired metal junction. This work is the first of its kind to demonstrate metal junctions on a DNA origami template. Metallized origami templates were characterized with the help of SEM imaging and EDX composition data to confirm the presence of the two different metals on the same template. In addition, a chemical “mask” was also used successfully at nanometer resolution to protect previously metallized sites (gold plated) to prevent further metal deposition. The results obtained represent important progress toward the realization of DNA-templated components for nano-circuit fabrication. The work also provides the basis for the next step to make metal-semiconductor junctions on a DNA template.
|
3 |
Vytváření nanostruktur na površích pevných látek hybridními metodami / CREATION OF NANOSTRUCTURES ON SURFACES OF SOLID MATTER USING HYBRID METHODSRudolfová, Zdena January 2018 (has links)
This thesis deals with the study of GaAs surface properties and with methodology of metal (mainly gold) nanoparticles deposition on GaAs substrate. GaAs has complicated surface oxides structure, which are very reactive when exposed to various chemicals (both acids and alkalines) and therefore they change GaAs surface properties. That is why the study of this properties is crucial for understanding of GaAs surface reactions on metal particles colloidal solution, from which the nanoparticles are deposited on the surface. The possibilites of GaAs surface etching and passivation are discussed. These should lead to surface stability enhancement during colloidal nanoparticles deposition. There was also studied the influence of adhesive polymer monolayer grown on GaAs substrate to the amount of nanoparticles deposited to the surface after substrate immersion into colloidal solution. This thesis concentrates on analyzing of methods, how the gold colloidal nanoparticles can be deposited selectivelly, only to defined areas. The areas were defined using charged particle beam.
|
4 |
Dépôts sélectifs d'oxydes de Titane et de Tantale par ajout d'un plasma de gravure dans un procédé PEALD pour application aux mémoires résistives / Selective deposition of TiO2 and Ta2O5 by adding plasma etching in PEALD process for resistive memoriesVallat, Rémi 05 October 2018 (has links)
Depuis l’apparition du circuit intégré, la performance des dispositifs semi-conducteurs est reliée à leur miniaturisation via le développement de procédés spécifiques tels que la lithographie. Néanmoins, la réduction des dimensions des dispositifs aux échelles nanométriques rend les étapes de patterning de plus en plus complexes et coûteuses (EUV, gestion de plusieurs passes de masque par couche et erreur de placement du/des masque(s) …) et pousse les fabricants de puces à se tourner vers des méthodes alternatives. Dans le but de réduire les coûts de fabrication des circuits intégrés, une approche bottom-up reposant sur l’utilisation de procédés de dépôts sélectifs est désormais envisagée, au détriment des approches conventionnelles top-down basées sur les procédés de lithographie. La solution de dépôt par couche atomique (ALD) est une technique appropriée pour le développement d’un procédé sélectif en raison de sa très grande sensibilité à la chimie de surface. Ce procédé est appelé dépôt sélectif de zone (ASD pour Area Selective Deposition). Il est basé sur un traitement spécifique d'activation ou de désactivation des réactions chimiques de surface avec le précurseur et/ou le réactif en mode ALD. Ces modifications de réactivité peuvent être obtenues en utilisant une couche de germination (activation) ou des groupes organiques tels que des monocouches auto-assemblées (SAM) (désactivation). Une autre voie est de tirer parti du retard inhérent à la croissance (ou temps d’incubation) sur différents substrats. Dans cette thèse, nous avons développé un nouveau procédé ASD d’oxyde métallique en combinant un dépôt de couche atomique et une étape de gravure qui permet de bloquer la croissance sur substrat à base de silicium (Si, SiO2 et SiN) versus un substrat métallique (TiN). L'étape de gravure est réalisée par addition de NF3 dans un plasma d'oxygène tous les n cycles du procédé PEALD. Nous avons utilisé ce procédé pour le dépôt de deux oxydes actuellement à l'étude pour les applications de mémoires résistives non-volatiles : Ta2O5 et TiO2. Le but des dépôts sélectifs pour l'application mémoire est de réaliser des points mémoires localisés métal/isolant/métal en intégration 3D verticale dite VRRAM. / At advanced nodes, lithography starts to dominate the wafer cost (EUV, managing multiple mask passes per layer and pattern placement error….). Therefore, complementary techniques are needed to continue extreme scaling and extend Moore’s law. Selective deposition and etching is one of them because they can be used to increase and enhance patterning capabilities at very low cost. From all the different deposition processes, Atomic Layer Deposition (ALD) is maybe the most suitable technique to develop a selective process due to its very good coverage property and its high surface sensitivity. This process is called Area Selective Deposition and is a selective deposition process for bottom-up construction It is usually based on a specific surface activation or deactivation treatment in order to activate or limit / inhibit chemical reactions with the ALD precursor / reactant. This surface modifications are usually obtained by using seed layer (activation) or organic groups such as Self-Assembled Monolayers (SAM) (deactivation). Another pathway for selective area deposition with ALD is to take advantage of the inherent substrate-dependent growth initiation: this is inherent selectivity based on difference of nucleation delay. In this thesis, we have proposed a new ASD process of thin oxide by combining atomic layer deposition and etching step (super-cycle) for a 3D Vertical RAM integration. This allows the selective growth of a thin oxide on a metal substrate without deposition on an insulator and/or a semi-conductor substrate(s). The etching step is achieved by NF3 addition in an oxygen plasma every n cycles of the PEALD process allowing (1) to etch the oxide layer on Si and/or SiO2 surface while keeping few nanometers of oxide on TiN substrate and (2) to passivate this two surfaces and to add a new incubation time on Si or SiO2 substrates. We used this process for the deposition of two oxides that are currently under study for non-volatile resistive memories applications: Ta2O5 and TiO2. The intention for memory application is to realize a crosspoint memory in Back-End level from a pattern area or a trench area without the photolithography step.
|
5 |
SELECTIVE DEPOSITION OF DIAMOND FILMS AND THEIR APPLICATION IN POLYMER BASED ELECTRODE ARRAYSSabens, David Michael January 2010 (has links)
No description available.
|
Page generated in 0.069 seconds