Spelling suggestions: "subject:"dielective emitter"" "subject:"dielective gmitter""
1 |
Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection DevicesSharma, Saumya 12 January 2015 (has links)
Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30µV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal diode with highly nonlinear I-V characteristics is required in order for such small signal rectification to be possible. Such diode fabrication was found to be faced with two major fabrication challenges. The first one being the lack of a precisely controlled deposition process to allow a pinhole free insulator deposition less than 3nm in thickness. Another major challenge is the deposition of a top metal contact on the underlying insulating thin film. As a part of this research study, most of the MIM diodes were fabricated using Langmuir Blodgett monolayers deposited on a thin Ni film that was sputter coated on a silicon wafer. UV induced polymerization of the Langmuir Blodgett thin film was used to allow intermolecular crosslinking. A metal top contact was sputtered onto the underlying Langmuir Blodgett film assembly. In addition to material characterization of all the individual films using IR, UV-VIS spectroscopy, electron microscopy and atomic force microscopy, the I-V characteristics, resistance, current density, rectification ratio and responsivity with respect to the bias voltage were also measured for the electrical characterization of these MIM diodes.
Further improvement in the diode rectification ratio and responsivity was obtained with Langmuir Blodgett films grown by the use of horizontally oriented organic molecules, due to a smaller tunneling distance that could be achieved in this case. These long chain polymeric molecules exhibit a two-dimensional molecular assembly thereby reducing the tunneling distance between the metal electrodes on either side of the insulating layer. Rectification ratios as high as 450:1 at ±200mV were obtained for an MIM diode configuration of Ni-LB films of Arachidic Acid films-(Au/Pd).
The bandwidth of the incident radiation that can be used by this rectenna assembly is limited to 9.5% of 30THz or ±1.5THz from the center frequency based on the antenna designs which were proposed for this research. This bandwidth constraint has led to research in the field of frequency selective emitters capable of providing a narrowband emission around 30THz.
Several grating structures were fabricated in the form of Ni-Si periodic arrays, in a cleanroom environment using photolithography, sputtering and deep reactive ion etching. These frequency selective samples were characterized with the help of focusing optics, monochromators and HgCdTe detectors. The results obtained from the emission spectra were utilized to calibrate a simulation model with Computer Simulation Technology (CST) which uses numerous robust solving techniques, such as the finite element method, in order to obtain the optical parameters for the model. Thereafter, a thorough analysis of the different dimensional and material parameters was performed, to understand their dependence on the emissivity of the selective emitter.
Further research on the frequency selectivity of the periodic nano-disk or nano-hole array led to the temperature dependence of the simulated spectra, because the material parameters, such as refractive index or drude model collision frequency, vary with temperature. Thus, the design of frequency selective absorbers/emitters was found to be significantly affected with temperature range of operation of these structures.
|
2 |
Development of low-cost high-efficiency commercial-ready advanced silicon solar cellsLai, Jiun-Hong 27 August 2014 (has links)
The objective of the research in this thesis is to develop manufacturable high-efficiency silicon solar cells at low-cost through advanced cell design and technological innovations using industrially feasible processes and equipment on commercial grade Czochralski (Cz) large-area (239 cm2) silicon wafers. This is accomplished by reducing both the electrical and optical losses in solar cells through fundamental understanding, applied research and demonstrating the success by fabricating large-area commercial ready cells with much higher efficiency than the traditional Si cells. By developing and integrating multiple efficiency enhancement features, namely low-cost high sheet resistance homogeneous emitter, optimized surface passivation, optimized rear reflector, back line contacts, and improved screen-printing with narrow grid lines, 20.8% efficient screen-printed PERC (passivated emitter and rear cell) solar cells were achieved on commercial grade 239 cm2 p-type Cz silicon wafers.
|
3 |
Procédés de dopage et de recuit laser pour la réalisation de cellules photovoltaïques au silicium cristallin / Laser doping and laser annealing for crystalline silicon solar cells processingPaviet-Salomon, Bertrand 12 September 2012 (has links)
Cette thèse se propose d’étudier les procédés de dopage et de recuit laser comme outils permettant la réalisation de cellules photovoltaïques au silicium cristallin. Des émetteurs dopés ou recuits par laser sont tout d’abord réalisés à l’aide de trois lasers et de différentes sources dopantes. Les lasers utilisés sont un laser vert nanoseconde, un laser excimère et un laser ultraviolet à haute cadence. Comme sources dopantes nous avons utilisé le verre de phosphore, des couches de nitrures de silicium dopées au bore ou au phosphore, ou encore des implantations ioniques de bore ou de phosphore. Des dopages très efficaces sont obtenus avec chaque couple laser/source dopante. En particulier, de faibles valeurs de résistances carrées et de densités de courant de saturation sont obtenues. Ces procédés laser sont ensuite appliqués à la réalisation de cellules à émetteur sélectif et à champ arrière au bore. Les cellules à émetteur sélectif dopé par laser (en utilisant le verre de phosphore comme source dopante) atteignent un rendement de 18,3 %, ce qui représente un gain total de 0,6 %abs comparé aux cellules standard à émetteur homogène. Les cellules à champ arrière au bore recuit par laser (à partir d’une implantation ionique de bore) montrent quant à elles un gain de 0,3 %abs par rapport aux cellules à champ arrière à l’aluminium, offrant ainsi un rendement de 16,7 %. / This study aims at investigating laser doping and laser annealing for crystalline silicon solar cells processing. Laser-processed emitters are firstly realized using three lasers and different dopants sources. The lasers are a nanosecond green laser, an excimer laser and a high-frequency ultraviolet laser. As dopants sources we used either phosphosilicate glass, phosphorus and boron-doped silicon nitrides, or phosphorus and boron ion implantation. Efficient phosphorus and boron doping are obtained using any of these laser/sources couple. In particular, low sheet resistances and low emitter saturation current densities are obtained. These laser processes are then applied to selective emitter and boron back-surface-field solar cells. Laser-doped selective emitter solar cells (using phosphosilicate glass as a dopants source) reach 18.3 % efficiency. This represents an overall gain of 0.6 %abs when compared to standard homogeneous emitter. On the other hand, laserannealed boron back-surface-field solar cells (using implanted boron as a dopants source) feature an overall gain of 0.3 %abs when compared to standard aluminium back-surface-field solar cells, thus yielding an efficiency of 16.7 %.
|
4 |
Conception et optimisation d'émetteurs sélectifs pour applications thermophotovoltaïques / Coherent thermal sources Design and optimization of thermophotovoltaic applicationsNefzaoui, Elyes 08 March 2013 (has links)
Le thermo-photovoltaïque (TPV), conversion du rayonnement thermique par des cellules photovoltaïques (PV), est un dispositif qui a suscité un intérêt croissant depuis deux décennies, notamment pour son efficacité supérieure à celle de la conversion photovoltaïque classique. Ceci est essentiellement dû à l'accord entre le spectre du rayonnement de la source thermique et le spectre de conversion de la cellule PV. Les rendements maximaux sont obtenus pour des sources thermiques cohérentes, émettant dans une gamme spectrale étroite, énergétiquement au-dessus de l'énergie de la bande interdite de la cellule PV. On propose dans ce travail d'appliquer une méthode d'optimisation stochastique, en l'occurrence l'optimisation par essaims de particules, pour concevoir et optimiser de telles sources. On aboutit alors à des structures unidimensionnelles simples, à base de films minces de diélectriques, métaux et de semi-conducteurs. Les propriétés radiatives de ces sources, stables pour des températures allant jusqu'à 1000 K, sont aisément contrôlables à l'aide de paramètres simples comme les épaisseurs des films ou la concentration de dopage. Finalement, on propose une étude d'optimisation paramétrique des propriétés optiques des matériaux susceptibles de maximiser l'échange radiatif en champ proche entre deux milieux plans semi-infinis. Cette étude aboutit à un outil pratique, sous forme d'abaques, permettant de guider le choix des matériaux pertinents afin de maximiser les puissances au même temps que l'efficacité des systèmes TPV nanométriques. / Thermo-photovoltaic conversion of thermal radiation is a concept that has been thoroughly investigated during the two last decades because of its high efficiency when compared to classical photovoltaics (PV). These high performances are mainly due to the good-matching between the thermal source radiation spectrum and the PV cell conversion spectrum. Maximal efficiencies areobtained with coherent sources that emit in narrow spectral bands, just above the band gap energy of the cell. In this report, a stochastic method to design and optimize such sources, the particle swarm optimization in this case, is firstly presented. This method leads to simple one-dimensional structures, composed of thin films of dielectrics, metals and semiconductors. The radiativeproperties of these sources are easily tunable with control parameters as simple as films thicknesses and doping concentrations. They are stable at high temperatures up to 1000 K. Second, a parametric optimization study of usual materials optical properties models (Drude and Lorentz) is presented in order to maximize radiative heat transfer between semi-infinite planes separated by nanometric gaps. This leads to a simple tool in the form of abacuses which would guide the choice of relevant materials to maximize the output power of nano thermo-photovoltaic devices.
|
5 |
Analýza vlivu tepelných jevů na termofotovoltaický systém / Analysis of the influence of thermal effects on thermophotovoltaic systemKolář, Jakub January 2014 (has links)
This semestral thesis focuses on the description of specific renewable resources in the form of thermophotovoltaic cells using selective radiators with micro/nano structures. This work deals with an introduction of renewable resources and specifically focuses on thermophotovoltaic. Thesis describes basic principles, but also influences affecting the proper functioning of these systems. It also focuses on selective radiators, which are created by mikro/nano structures, and factors that can affect their implementation or simulation. Part of the work are also examples of calculations of basic parameters of the structures, which will be used in the simulations. Next chapters are dealing with simulations which are analyzing thermal effects on termophotovoltaic system. Except the analysis itself there is also partial optimalization solving some of the negative thermal effects.
|
6 |
Procédés laser pour la réalisation de cellules photovoltaïques en silicium à haut rendement / Laser processing for high efficiency silicon solar cellsPoulain, Gilles 25 October 2012 (has links)
L'énergie photovoltaïque est promise à une forte croissance dans les prochaines années. Propre et renouvelable, elle possède en effet de sérieux atouts pour répondre aux grands enjeux posés par le réchauffement climatique et l'appauvrissement des ressources en énergie fossile. Elle reste néanmoins une énergie chère en comparaison des autres formes de production électrique. D'importants efforts de R&D doivent être mis en œuvre pour abaisser son coût et la rendre plus compétitive. Il existe d'ores et déjà dans les laboratoires des technologies permettant d'augmenter significativement le rendement des cellules solaires en silicium (qui représentent aujourd’hui l'essentiel du marché). Mais elles font appel le plus souvent à des procédés, comme la photolithographie, qui restent chères pour l'industrie photovoltaïque. Les technologies laser sont une voie envisagée pour répondre à ce problème. Sélectifs, sans contact et autorisant de hautes cadences, les procédés laser permettent de réaliser des structures avancées de cellules à moindre coût. Il existe ainsi une forte dynamique de recherche autour de ces procédés. Les traitements laser permettent d’usiner ou de modifier la matière, de façon rapide et fiable. Il est ainsi possible d’ablater sélectivement certains matériaux, de réaliser des tranchées ou des trous, ou encore de modifier des profils de dopage. Des architectures complexes deviennent ainsi accessibles sans recourir aux couteuses technologies de la microélectronique. C'est dans ce contexte que se déroule ce travail de thèse, financé par l'ADEME et la société SEMCO Eng., et s'inscrivant également dans le projet de l'Agence National pour la Recherche PROTERRA. Deux objectifs principaux ont motivé sa mise en place : développer un savoir-faire au laboratoire INL sur les technologies laser avec l'ambition de rejoindre les instituts leaders sur ces thématiques et transférer les procédés développés à l'équipementier SEMCO Eng. pour lui donner accès à une technologie aujourd'hui inédite dans l'industrie photovoltaïque française. Ces recherches ont porté sur les cellules photovoltaïques en silicium, dites de première génération, et se sont articulées autour de trois axes principaux : la modélisation de l'interaction laser matière, l'ablation sélective de diélectriques (notamment de la couche antireflet afin de permettre de nouvelles techniques de métallisation) et la réalisation de dopages localisés. Des cellules de grandes dimensions fabriquées en collaboration avec SEMCO Eng. et tirant parti de ces procédés ont permis d’obtenir des rendements en accord avec l’état de l’art (proche de 18 %). / Silicon solar cells still require cost reduction and improved efficiency to become more competitive. New architectures can provide a significant increase in efficiency, but today most of the approaches need additional fabrication steps. In this context, laser processing offers a unique way to replace technological steps like photolithography that is not compatible with the requirements of the photovoltaic industry. This PhD thesis will present two promising laser processes for silicon solar cells: selective laser doping and selective laser ablation. Laser-assisted diffusion of dopants is a promising way to produce at low cost advanced silicon solar cells with high efficiency. Indeed, selective emitters, which rely on high dopant concentration localized under the front electrical contacts are an effective way to reduce power losses at the front surface of silicon solar cells. Several laser-based techniques are competing to optimise the emitter geometry. One of the main approaches is to take advantage of the doping glass (usually P2O5 for p-type silicon solar cells) that is formed during the standard diffusion process. Selective laser ablation is an effective way to open the antireflection layer (SiNx) in order to perform alternative front side metallization. Indeed, in the industrial production of standard silicon solar cells, the front side metallization is made by screen printing of metal paste. This process scheme is very cost efficient but it leads to serious limitations of the solar cell efficiency. Electrochemical metallization avoids these issues but requires a selective opening of SiNx, which is usually done by photolithography. Direct laser ablation allows to consider this approach at an industrial level. These processes are presented illustrated by research conducted during this PhD at INL in laser technologies for photovoltaics. An innovative and potentially self-aligned process is also discussed, where the laser is used to open locally the antireflection and passivation coating, and at the same time, achieve local phosphorus diffusion. Moreover solar cells results above 18% have been obtained thanks to a selective emitter structure achieved with selective laser doping.
|
Page generated in 0.0718 seconds