• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selective offload capability simulation (SOCS) : an analysis of high-density storage configurations

Futcher, Frank W. 09 1900 (has links)
Approved for public release; distribution in unlimited. / Future sea bases, such as the Maritime Prepositioning Force (Future), will serve as key distribution nodes and must be able to sustain forces ashore and selectively offload supplies from storerooms quickly and efficiently. Current MPF ships maximize the available cargo storage onboard and have little ability to selectively offload supplies. To make selective offload a reality, MPF(F) requires lower stowage densities and new technologies to efficiently move items, especially for those supplies needed in direct support of forces ashore. The difficult questions are how dense and in what configurations MPF(F) storerooms can be packed, and how items should be retrieved in order to selectively offload supplies and provide acceptable response time. We analyze the trade-off between storage density and mean retrieval time in a dynamic environment for different storage densities and configurations in notional storerooms aboard a future sea base. We examine two demand scenarios and two different retrieval rules to determine how each storage configuration responds to retrieval requests over time. Our results provide insight into the types of storeroom configurations that provide the best mean retrieval times and how a simple retrieval rule can significantly reduce mean retrieval time under certain demand conditions. / Lieutenant Commander, United States Navy

Page generated in 0.0514 seconds