• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sea TENTACLE: Track, Engage, & Neutralize Threats - Asymmetric & Conventional - in the Littoral Environment

Black, Brian C., Bollock, Laura H., Bouabid, Sinene, Glova, Michael A., Hall, Jason A., Harden, Glynn M., Hickle, Curtis J., Hosoglu, Selcuk, Majewicz, Peter, Mullenix, Kenneth R., Nozik, Andrew B., Sarar, Stephen F., Ucar, Hakan 01 1900 (has links)
Includes supplementary material. / Sea TENTACLE is a proposed afloat platform whose primary mission is to utilize the state-of-the-art technology of unmanned vehicles to monitor and neutralize all subsurface enemy threats in the littorals. This mission can be specified further as anti-submarine warfare, mine warfare and maritime surveillance. The design philosophy of Sea TENTACLE embodies the ideal of providing a multi-mission capable sea frame extending network-centric warfare into the littorals. The design goals of the TSSE team were first to develop a platform to deploy, recover, and maintain unmanned vehicle (e.g. UUVs, USVs, UAVs) and second to enableto ship to act as an afloat network operations center for distributed assets. Allowing all units to work together seamlessly to conduct focused missions in the littorals makes the Sea TENTACLE a creitical component within the network-centric environment. The versatility of its cargo hold and modular design allows Sea TENTACLE to be outfitted dynamically to complete a veriety of secondary missions including humanitarian aid, salvage and spacial operations support. Sea TENTACLE's combat management and operations system will employ the Enterprise architecture design enabling C4ISR capabilities that will meet emerging network centric warfare needs.
2

Optimizing global Combat Logistics Force support for sea base operations

DeGrange, Walter C. 03 1900 (has links)
Approved for public release, distribution is unlimited / The Navy has to choose the number of, and designs for, ships in the Combat Logistics Force (CLF), and then plan how to use them to provide logistical support to our Carrier Strike Groups, Expeditionary Strike Groups, and Seabasing platforms engaged in any variety of worldwide conflicts. CLF ships are very expensive to build and equip and our budget is limited --- we need to make sure the ships we buy and the way we integrate these with our CLF fleet can continue to provide the flexible support our Navy requires. We introduce a decision support tool using a global sea route and resupply base model, and a daily time resolution optimization of CLF ship activities to support any complete, worldwide scenario. Our result is an optimal, face-valid daily operational logistics plan - a schedule of evolutions for each available CLF ship. We discover exactly how to use CLF ships to support a notional, but particularly relevant, preemptive combat scenario with follow-on humanitarian assistance missions. Finally, we study how changing CLF ship numbers and missions can enhance operational effectiveness. / Lieutenant Commander, United States Navy
3

Selective offload capability simulation (SOCS) : an analysis of high-density storage configurations

Futcher, Frank W. 09 1900 (has links)
Approved for public release; distribution in unlimited. / Future sea bases, such as the Maritime Prepositioning Force (Future), will serve as key distribution nodes and must be able to sustain forces ashore and selectively offload supplies from storerooms quickly and efficiently. Current MPF ships maximize the available cargo storage onboard and have little ability to selectively offload supplies. To make selective offload a reality, MPF(F) requires lower stowage densities and new technologies to efficiently move items, especially for those supplies needed in direct support of forces ashore. The difficult questions are how dense and in what configurations MPF(F) storerooms can be packed, and how items should be retrieved in order to selectively offload supplies and provide acceptable response time. We analyze the trade-off between storage density and mean retrieval time in a dynamic environment for different storage densities and configurations in notional storerooms aboard a future sea base. We examine two demand scenarios and two different retrieval rules to determine how each storage configuration responds to retrieval requests over time. Our results provide insight into the types of storeroom configurations that provide the best mean retrieval times and how a simple retrieval rule can significantly reduce mean retrieval time under certain demand conditions. / Lieutenant Commander, United States Navy

Page generated in 0.0441 seconds