Spelling suggestions: "subject:"dielective autophagy"" "subject:"byselective autophagy""
1 |
The interplay of SmNBR1 and SmATG8 in selective autophagy of the filamentous fungus Sordaria macrosporaWerner, Antonia 28 March 2017 (has links)
No description available.
|
2 |
Contrôle de l’autophagie lors des phases précoces de l’infection par l’adénovirus / Adenovirus control autophagy during cell entryMontespan, Charlotte 13 December 2016 (has links)
L’adénovirus (AdV) est un virus non enveloppé à ADN double brin qui entre dans la cellule par endocytose. Dans l’endosome un désassemblage partiel de la capside permet la libération d’une protéine interne de la capside, la protéine VI (PVI). Cette protéine code une hélice amphipathique qui va permettre la rupture de l’endosome. Des travaux antérieurs du laboratoire ont montré que le transport des particules virales vers le noyau nécessite la présence du motif conservé PPxY dans la PVI qui permet le recrutement d’ubiquitines ligases de la famille des Nedd4 (telles que Nedd4.1 et Nedd4.2). Il a précédemment été montré que la rupture des membranes induite lors d’infections bactériennes activait l’autophagie afin d’éliminer le pathogène intracellulaire via une dégradation lysosomale. Nos résultats démontrent que l’AdV induit également l’autophagie lors de son entrée dans la cellule. L’utilisation de différents AdV mutants nous a permis de démontrer que la rupture de l’endosome était responsable de l’induction de l’autophagie. De plus nos résultats montrent que le virus sauvage est capable d’éviter sa dégradation en contrôlant l’autophagie grâce au recrutement de la ligase Nedd4.2 via le motif PPxY de la PVI. Au contraire, un virus mutant dépourvu du motif PPxY et donc incapable de recruter la Nedd4.2 est séquestré dans les vésicules autophagiques puis dégradé par la fusion de ces vésicules avec les lysosomes. Ainsi le motif PPxY constitue un déterminant moléculaire permettant au virus de contourner les défenses cellulaires antivirales. / Adenoviruses (AdV) are linear ds-DNA containing, non-enveloped viruses that enter cells by receptor-mediated endocytosis. Once in the endosome it occurs a partial disassembly of the capsid allowing the releases of the membrane lytic capsid protein VI, which encodes an N-terminal amphipathic helix responsible for the endosome rupture. Our previous work showed that transport to the nucleus requires a conserved PPxY motif in PVI, which recruits ubiquitin ligases of the Nedd4 family (e.g. Nedd4.1 and 4.2). Previous work has shown that membrane damage induced by invasive bacteria elicits selective cellular autophagy to eliminate the pathogen via lysosomal degradation. In our current work we show that Adv also induce autophagy upon entry. Using a set of mutant AdV’s attenuated at each step of the membrane penetration process we show that indeed the membrane damage induced by the virus is causative for autophagy induction. Moreover the data show that wildtype AdV limit the level of autophagy induction and evade autophagic degradation by using a Nedd4.2 dependent process. In contrast, mutant viruses mutated for its PPxY and that fail to recruit Nedd4.2 are subject to autophagic degradation. Our data suggest that the presence of the PPxY motif in the virus subverts the autophagic process and thus identify the PPxY motif as an integral part of the virus to undermine cellular antiviral mechanism.
|
3 |
Development and Use of Lipidomics and Proteomics Methods to Identify and Measure Pro-Survival Metabolic Pathways in CancerSpeirs, Monique Merilyn 01 October 2018 (has links)
Throughout society’s continual war against cancer, we have attempted pharmacological intervention only to find that tumors develop modes of resistance. It is well known that genetics play an integral role in cancer. Technological advances have greatly improved our ability to study cancer biochemistry beyond the genome by measuring changes in the expression and activity of RNA, proteins, and lipids in experimental models and human patients. As our techniques and technology to perform cancer research progresses, it is becoming more evident that cancer cells develop stress tolerance mechanisms at multiple levels within the central dogma, including altering mRNA expression, enzyme concentrations, and functional activity of cellular proteins and lipids. In the first chapter, I review previous discoveries demonstrating the importance of metabolic reprogramming in cancer cells and how shifts in metabolic pathways contribute to cancer progression and therapeutic challenges. I discuss how mass spectrometry is a multifunctional research tool that can be used to identify global shifts in gene expression, identify oncogenic roles of specific metabolites and corresponding metabolic pathways, conduct enzyme activity assays, and understand the effects of drugs on cell signaling and metabolic flux through specific pathways. While metabolic reprogramming is a complex and multifaceted concept, the following chapters focus on two specific stress tolerance pathways of lipid and protein metabolism we have shown to significantly promote cancer cell evolution, proliferation, and drug resistance in models of human pancreatic and colon cancer. I describe novel mass spectrometry-based lipidomics and proteomics methods we developed to measure and determine the biological impact of these pathways in each model. I discuss the contributions we have made toward increasing general knowledge of metabolic reprogramming networks in cancer and how they may be targeted in more specific and effective manners to sensitize cancers to therapeutic drugs. Specifically, the second chapter entails our study of a pro-survival lipid metabolic pathway driven by the sphingolipid modifying enzyme sphingosine kinase in a panel of differentially reprogrammed pancreatic cancer subclones. The third chapter describes our novel kinetic proteomics approach to identify how the cellular degradation system autophagy is used to selectively remodel the proteome of colon tumor cells in a xenograft mouse model of colon cancer. Lastly, I discuss how these and other projects completed during my graduate work lay a foundation for ongoing research to further our fundamental understanding of cancer metabolism and treatment development.
|
4 |
Rôle de l'autophagie sélective au cours de l'infection par le VIH-1 des lymphocytes T CD4 / Role of selective autophagy during HIV‐1 infection of the CD4 T lymphocytesDaussy, Coralie 16 September 2016 (has links)
L’autophagie est un mécanisme de dégradation lysosomale ubiquitaire impliqué dans la lutte contre les infections. Les agents infectieux ont développé des stratégies pour éviter ou utiliser l’autophagie à leur profit. Cette dégradation peut être hautement sélective grâce à l’intervention de « récepteurs autophagiques », comme p62/SQSTM1, chargés de l’adressage de substrats à la machinerie autophagique grâce à leur interaction avec les protéines de la famille ATG8. Notre équipe a montré que les protéines d’enveloppe du VIH‐1 (Env) déclenchent l’autophagie dans les lymphocytes T CD4. Lorsque ces cellules sont infectées de façon productive, le processus autophagique est bloqué par le virus. Au cours de ma thèse nous avons montré que l’autophagie exerce une fonction anti‐VIH en dégradant sélectivement son transactivateur Tat, via son interaction avec p62. Au contraire, lorsque les cellules cibles ne sont pas productivement infectées, car le cycle viral est interrompu après l’étape d’entrée, l’autophagie n’est pas contrôlée et conduit à la mort par apoptose, suggérant que l’autophagie dégrade sélectivement un facteur de survie cellulaire. Mes travaux de thèse montrent qu’Env induit un stress oxydatif impliqué dans la mort par apoptose des cellules cibles non infectées. Nos résultats préliminaires suggèrent que les peroxysomes seraient des cibles de l’autophagiedans ces conditions. Ces organelles étant chargées de détoxifier la cellule, nous avons donc formulé l’hypothèse que l’autophagie, induite par Env, conduit à la dégradation sélective des peroxysomes, entraînant l’accumulation espèces oxydées dans les cellules cibles et ainsi, leur mort par apoptose. / Autophagy is an ubiquitous degradation pathway involved in innate immunity. Numerouspathogens have therefore developed strategies to block or use the autophagy machinery to their own benefit. This degradation can be highly selective, thanks to the intervention of autophagy receptors, like p62/SQSTM1, involved in the specific targeting of substrates to autophagosomes after their interaction with the ATG8 family of autophagic proteins. Our team has demonstrated that the HIV‐1 envelope proteins (Env) are responsible for autophagy triggering in CD4 T lymphocytes. If the target cells become productively infected, the autophagy process is blocked by the virus. During my thesis, we report that autophagy exerts an anti‐HIV effect by selectively degrading the HIV‐1 transactivator Tat, via its interaction withp62. On the contrary, if the target cells are not productively infected because the viral cycle is interrupted after the entry step, autophagy is not controlled and leads to apoptosis. These results suggest that the degradation of cellular components could be responsible for the induction of apoptosis. My thesis work indicates that Env induces an oxidative stress in the uninfected target cells and that this stress is involved in their death. Our preliminary results suggest that the peroxisomes would be targeted to autophagic degradation in these conditions. As these organelles are involved in the detoxification of the cells, we have made the assumption that Env‐induced autophagy triggers the selective degradation of these peroxisomes that leads to the accumulation of reactive oxygen species, and ultimately to apoptotic cell death.
|
Page generated in 0.0525 seconds