• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 9
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the electrochemical performance of energy storage devices composed of cellulose and conducting polymers

Tammela, Petter January 2016 (has links)
Applications that require electrical energy storage are becoming increasingly diverse. This development is caused by a number of factors, such as an increasing global energy demand, the advent of electric vehicles, the utilization of intermittent renewable energy sources, and advances in disposable and organic electronics. These applications will set different demands on their electrical energy storage and, thus, there will be no single technology used for all applications. For some applications the choice of energy storage materials will be extremely important. Conventional batteries and supercapacitors rely on the use of nonrenewable inorganic materials mined from depleting ores, hence, requiring large amounts of energy for their processing. Such materials also add a significant cost to the final product, making them less attractive for large scale applications. Conducting polymers, on the other hand, constitute a class of materials that can be used for organic matter based energy storage devices. The aim of this thesis was to investigate the use of a composite consisting of the conducting polymer polypyrrole (PPy) and cellulose derived from Cladophora sp. algae for electrical energy storage. The polymer was coated onto the cellulose fibers by chemical polymerization resulting in a flexible material with high surface area. By using this composite as electrodes, electrochemical cells consisting of disposable and non-toxic materials can be assembled and used as energy storage devices. The resistances of these prototype cells were found to be dominated by the resistance of the current collectors and to scale with the thickness of the separator, and can hence be reduced by cell design. By addition of nanostructured PPy, the weight ratio of PPy in the composite could be increased, and the cell voltages could be enhanced by using a carbonized negative electrode. Composites of cellulose and poly(3,4-ethylenedioxythiophene) could also be synthesized and used as electrode materials. The porosities of the electrodes were controlled by mechanical compression of the composite or by coating of surface modified cellulose fibers with additional PPy. Finally, the self-discharge was studied extensively. It was found that oxygen was responsible for the oxidation of the negative electrode, while the rate of self-discharge of the positive electrode increases with increasing potential. Through measurements of the charge prior to and after self-discharge, as well as with an electrochemical quartz crystal microbalance, it was found that the self-discharge of the positive electrode was linked to an exchange of the counter ions by hydroxide ions. It is also demonstrated that the self-discharge rate of a symmetric PPy based device can be decreased dramatically by proper balancing of the electrode capacities and by reducing the oxygen concentration. The results of this work are expected to contribute towards future industrial implementation of electric energy storage devices based on organic materials.
2

A SYSTEMATIC STUDY OF SELF-DISCHARGE MECHANISMS IN CARBON-BASED, AQUEOUS ELECTROLYTE ELECTROCHEMICAL CAPACITORS

Oickle, Alicia 21 January 2013 (has links)
This work focused on the study of self-discharge mechanisms of carbon electrochemical capacitor electrodes in 1.0 M H2SO4 electrolyte. Electrochemical capacitors have an increasingly important role in the future of energy storage for specific applications due to their high cycle lives, high power capabilities and the ability to use environmentally friendly materials. Remediation of the occurrence of self-discharge – the loss of charge over time when left in open-circuit configuration – must take place before electrochemical capacitors can be used more widely as this diminished potential results in a reduction of stored energy. By examining the now poorly understood causes and mechanisms of self-discharge, beneficial modifications to the electrochemical capacitors systems can be made, improving device performance. Three-electrode electrochemical set-ups were used to separate self-discharge mechanisms on the negative and positive electrodes. Various electrode and electrolyte reactions were investigated in relation to self-discharge, including Fe-contamination reaction, electrolyte decomposition, oxygen-reduction, carbon oxidation, and carbon surface group development. All experiments were conducted on porous carbon electrodes. It was determined that Fe-contamination increased self-discharge on both carbon electrodes at concentrations >10-3 M, and that previously developed planar kinetic models applied to these porous systems. Electrolyte decomposition did not result in increased self-discharge on either electrode. Electrolyte oxygen content must be minimized as oxygen is believed to undergo reduction to hydrogen peroxide on the negative-electrode, resulting in an increase in self-discharge. The carbon electrodes used in this work must be cycled prior to energy storage as the capacitance varies greatly with continued cycling, and the lack of cycling results in increased self-discharge. Additionally, interest in the carbon electrode’s surface functionalities resulted in the standardization of the Boehm titration.
3

Self-discharge of Rechargeable Hybrid Aqueous Battery

Konarov, Aishuak 05 1900 (has links)
This thesis studies the self-discharge performance of recently developed rechargeable hybrid aqueous batteries, using LiMn2O4 as a cathode and Zinc as an anode. It is shown through a variety of electrochemical and ex-situ analytical techniques that many parts of the composite cathode play important roles on the self-discharge of the battery. It was determined that the current collector must be passive towards corrosion, and polyethylene was identified as the best option for this application. The effect of amount and type of conductive agent was also investigated, with low surface area carbonaceous material giving best performances. It was also shown that the state of charge has strong effects on the extension of self-discharge. More importantly, this study shows that the self-discharge mechanism in the ReHAB system involves the cathode active material and contains a reversible and an irreversible part. The reversible portion is predominant and is due to lithium re-intercalation into the LiMn2O4 spinel framework, and results from Zn dissolution into the electrolyte, which drives the Li+ ions out of the solution. The irreversible portion of the self-discharge occurs as a result of the decomposition of the LiMn2O4 material in the presence of the acidic electrolyte, and is much less extensive than the reversible process.
4

The Role of Charge Redistribution in the Self-discharge of Electrochemical Capacitor Electrodes

Black, Jennifer 08 December 2010 (has links)
This work examines the role of charge redistribution in the self-discharge of electrochemical capacitor electrodes. Electrochemical capacitors are charge storage devices which have high power capability and a long cycle life, but have a low energy density compared to other devices, coupled with a high rate of self-discharge which further diminishes the available energy. The mechanisms of self-discharge in electrochemical capacitors are poorly understood, and it is important to gain a better understanding of the electrode processes which lead to self-discharge, in order to minimize self-discharge and enhance electrochemical capacitor performance. To learn more about charge redistribution and its role in the self-discharge of electrochemical capacitors, multiple self-discharge experiments were performed on carbons with various surface areas/pore structures and in various electrolytes. Charge redistribution was also examined in a model pore (a transmission line circuit based on de Levie?s model of a porous electrode) and results from this model were compared to the self-discharge of a high surface-area carbon. Results demonstrate that charge redistribution is a major component of the self-discharge in high surface-area carbons. Results also indicate that charge redistribution requires a much longer time than previously thought (tens of hours rather than minutes) which further highlights the importance of charge redistribution during self-discharge. Therefore when performing mechanistic studies of self-discharge in electrochemical capacitors, it is important that effects of charge redistribution are not neglected. The self-discharge profiles of various pore shapes were also examined using the model pore, and results emphasize the superiority of cone and cylindrically shaped pores, and the disadvantages of restrictive pore mouths and bottlenecks for high power applications.
5

Enhancement of Supercapacitor Energy Storage by Leakage Reduction and Electrode Modification

Tevi, Tete 02 March 2016 (has links)
Supercapacitors have emerged in recent years as a promising energy storage technology. The main mechanism of energy storage is based on electrostatic separation of charges in a region at the electrode-electrolyte interface called double layer. Various electrode materials including carbon and conducting polymers have been used in supercapacitors. Also, supercapacitors offer high life cycle and high power density among electrochemical energy storage devices. Despite their interesting features, supercapacitors present some disadvantages that limit their competitivity with other storage devices in some applications. One of those drawbacks is high self-discharge or leakage. The leakage occurs when electrons cross the double layer to be involved in electrochemical reactions in the supercapacitor’s electrolyte. In this work, the first research project demonstrates that the addition of a very thin blocking layer to a supercapacitor electrode, can improve the energy storage capability of the device by reducing the leakage. However, the downside of adding a blocking layer is the reduction of the capacitance. A second project developed a mathematical model to study how the thickness of the blocking layer affects the capacitance and the energy density. The model combines electrochemical and quantum mechanical effects on the electrons transfer responsible of the leakage. Based on the model, a computational code is developed to simulate and study the self-discharge and the energy loss in hypothetical devices with different thicknesses of the blocking layer. The third research project identified the optimal amount of a surfactant (Triton-X 100) that had a significant effect on the double layer capacitance and conductivity of a spin-coated PEDOT:PSS (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)) electrode. The effect of the concentration of the surfactant was investigated by measuring the electrochemical properties and the conductivity of different electrodes. The electrodes were fabricated with different concentrations of the surfactant. Scanning electron microscopy characterizations confirmed the structural change in the PEDOT:PSS that contributed to the capacitance and conductivity enhancement. A final research project proposed an approach on how to utilize the modified PEDOT:PSS added to different photoactive dyes to design a photoactive supercapacitor. The new approach showed the possibility of using a supercapacitor device as an energy harvesting as well as a storage device.
6

Detailing the Self-Discharge of a Cathode Based on a Prussian Blue Analogue

Musella, Elisa, Mullaliu, Angelo, Ruf, Thomas, Huth, Paula, Tonelli, Domenica, Aquilanti, Giuliana, Denecke, Reinhard, Giorgetti, Marco 18 April 2023 (has links)
Prussian Blue analogues (PBAs) are a promising class of electrode active materials for batteries. Among them, copper nitroprusside, Cu[Fe(CN)5NO], has recently been investigated for its peculiar redox system, which also involves the nitrosyl ligand as a non-innocent ligand, in addition to the electroactivity of the metal sites, Cu and Fe. This paper studies the dynamics of the electrode, employing surface sensitive X-ray Photoelectron spectroscopy (XPS) and bulk sensitive X-ray absorption spectroscopy (XAS) techniques. XPS provided chemical information on the layers formed on electrode surfaces following the self-discharge process of the cathode material in the presence of the electrolyte. These layers consist mainly of electrolyte degradation products, such as LiF, LixPOyFz and LixPFy. Moreover, as evidenced by XAS and XPS, reduction at both metal sites takes place in the bulk and in the surface of the material, clearly evidencing that a self-discharge process is occurring. We observed faster processes and higher amounts of reduced species and decomposition products in the case of samples with a higher amount of coordination water.
7

Investigating self-discharge in a graphite dual-ion cell using in-situ Raman spectroscopy.

Hassan, Ismail Yussuf January 2023 (has links)
Anion intercalation in the graphite positive electrode of a dual-ion battery requires high potential (> 4.3 V vs Li+/Li), which aggravates parasitic reactions involving electrolyte decomposition and Al corrosion, manifesting in poor coulombic efficiency, cycle life, and quick self-discharge. This study aims to investigate the stability of anion-intercalated graphite electrodes in a 4 M solution of lithium bis(fluorosulfonyl)imide (LiFSI) in ethyl methyl carbonate (EMC) using both in-situ and ex-situ Raman spectroscopy. The concentrated electrolyte is essential as it limits parasitic reactions at the cathode-electrolyte interface (CEI) occurring in parallel to anion intercalation. Using electrochemical methods including cyclic voltammetry, and post-mortem electron microscopy it was confirmed that the Al current collector is largely stable at potentials as high as 5.2 V in the electrolyte under consideration; no dissolved Al species were detected using EDX characterization. Results from the cyclic voltammetry study also indicate that parasitic reactions can be mitigated when the cut-off potential is limited to 5.0 V leading to higher coulombic efficiency (CE = 94 %) and more stable discharge capacity (85.17 mAh g-1). However, extending the potential to 5.1 and 5.2 V results in the discharge capacity increasing by almost 20 mAh g-1, though at the expense of the coulombic efficiency, which decreases from 94 to 76 %. Upon raising the cut-off potential to 5.3 V, the CE significantly decreased (20.62 %) as a result of extensive solvent decomposition ultimately leading to much quicker capacity fading.  Based on SEM images taken after 50 cycles, graphite particles did not sustain any structural or morphological change during cycling regardless of the cut-off potentials applied. Further tests were conducted on Li-graphite DIBs using galvanostatic methods in the range from 3 to 5 V, and at different specific currents (20, 50, and 100 mA g-1). Though the cells exhibited good performance in terms of capacity retention, and cycle life at all currents, the coulombic efficiency tended to decrease as the test currents were lowered. This observation confirms the presence of parasitic reactions which are only visible when the experimental timescale is sufficiently long. At 50 and 100 mA g-1, the CE reached > 98 % which further verifies the kinetic aspect of electrolyte decomposition reactions. It is evident that self-discharge sustained in the course of open-circuit potential (OCP) relaxation of the fully charged cell can reveal the stability of the electrolyte and the anion-intercalated graphite. Raman spectroscopy measurements conducted in-situ and ex-situ on graphite electrodes charged and discharged to a series of potential cut-offs reveal the existence of self-discharge leading to extraction of anions from the graphite particles. This was demonstrated through the spectral appearance of E2g2(i) band next to E2g2(b) band at a fully intercalated state, as opposed to the in-situ spectrum, which only showed one intercalated band (E2g2(b)). It can be concluded that concentrated electrolytes (such as 4 M LiFSI in EMC) only provide kinetic stability and are unable to entirely inhibit parasitic reactions at the interface. This further highlights the need for electrolyte additives that can create a more stable interfacial passivation layer on the positive electrode so that more reversible anion intercalation can be attained.
8

Étude sur les propriétés physicochimiques et électrochimiques des liquides ioniques redox et leur application en tant qu’électrolyte dans les supercapaciteurs

Xie, Han Jin 12 1900 (has links)
Ce mémoire porte sur les recherches et les développements dans le domaine des électrolytes à base de liquide ionique redox. Une nouvelle famille de liquide ionique redox basée sur le ferrocenylsulfonyl(trifluoromethylsulfonyl) (FcNTf) a été développée et étudiée pour la première fois afin de démontrer le potentiel de ces liquides ioniques dans les dispositifs de stockage d’énergie. En premier lieu, les liquides ioniques redox (RILs) composés de l’anion électroactif et du cation d’alkylimidazolium sont synthétisés et caractérisés. L’impact de la variation des chaînes alkyles du cation sur les propriétés physicochimiques et électrochimiques du RIL a été étudié. À une faible concentration en solution, l’impact du cation a peu d’influence sur l’ensemble des propriétés. Cependant, à haute concentration (>50 % massique) et sans électrolyte de support, la formation de films en oxydation a été observée à l'électrode positive. Ce point est intéressant pour les futures recherches et développements dans le domaine, puisque la variation des chaînes alkyles du cation des liquides ioniques redox et la formation de films lors de l’oxydation du FcNTf est peu connue et comprise en littérature. De plus, l’optimisation des conditions de solution d'électrolyte RIL dans les supercapaciteurs est aussi présentée. En deuxième lieu, la mise en application des RILs dans les supercapaciteurs a été testée. La performance énergétique et le mécanisme d’autodécharge ont été ciblés dans cette étude. En présence de l’électrolyte redox, la contribution des réactions faradaiques permet d'accomplir un gain énergique de 287 % versus les systèmes purement capacitifs. À cause de la formation de film à l’électrode, l’électrolyte redox FcNTf joue un rôle primordial dans la prévention de l’autodécharge versus les liquides ioniques qui étaient connus jusqu’à présent. Finalement, ce mémoire a permis de mieux comprendre les effets structure-propriétés relative aux modifications du cation chez les liquides ioniques redox. / This thesis is focuses on the development of redox ionic liquid electrolytes for supercapacitors. A new family of redox ionic liquids (RILs) based on ferrocenylsulfonyl(trifluoromethylsulfonyl) (FcNTf) is reported, which show great potential as functional materials for energy storage devices. For the first part, RILs with electro-active anion and alkylimidazolium cations are synthesised and characterized. The impact of the variation of the imidazolium cation alkyl chain on the electrochemical and physicochemical properties is analysed. At lower concentrations of RIL, the cation structure has little impact on the solution properties. However, at higher concentrations, (>50 wt. %) and without supporting electrolyte, formation of a thin film on the electrode surface accompanies the oxidation process. The thin film formation has great impact for the control of deposition of the charged species on the electrode. The influence of the cation structure on the RIL and film deposition during the oxidation reaction is not well understood in the literature so far. In addition, optimisation of RILs as electrolytes for supercapacitors is also presented. In the second part, the RIL electrolyte is tested in supercapacitor cells. With faradaic contribution from the redox electrolyte, an increase of 287% in the energy is observed versus capacitive electrochemical systems. Furthermore, the film layer formation achieved by the use of FcNTf redox ionic liquid is an effective way to prevent the self-discharge of redox-active electrolyte supercapacitor. This thesis has helped to understand the structure-property relationships of redox ionic liquids.
9

Etude de dégradations des performances de Piles à Combustible PEM BT alimentées en H2/O2 lors de campagnes d'endurance : du suivi de l'état de santé en opération à la modélisation du vieillissement / Study of the performance degradation of low temperature PEM fuel cells fed with H2/O2 during ageing campaigns : from the online state of health monitoring to the ageing modeling

Tognan, Malik 12 September 2018 (has links)
Les travaux développés dans cette thèse traitent de la thématique du vieillissement des Piles à Combustible (PàC) à Membranes Echangeuses de Protons Basse Température (PEM BT). L’utilisation d’une PàC dans un contexte stationnaire à l’intérieur d’une batterie H2 (tandem PàC/Electrolyseur avec un étage de stockage H2 voire O2) est envisagée dans le cadre du déploiement d’un micro-réseau insulaire basé sur des sources d’énergie renouvelables (éolien et photovoltaïque). Deux aspects connexes associés à l’utilisation de la PàC et à son vieillissement dans cet environnement sont investigués dans ce travail de thèse : d’une part la manière dont les performances de la PàC et son rendement vont se dégrader au cours du temps et d’autre part les méthodes et outils qui vont être utilisés pour évaluer son état de santé durant sa période d’activité. La première de ces deux thématiques est abordée via l’étude d’une base de données d’essais en endurance à courant constant effectués sur des prototypes de stack PEM BT fonctionnant en H2/O2. L’hétérogénéité du vieillissement pour les différents stacks testés est mise en avant, de même que le découplage entre les pertes d’étanchéité interne et les dégradations des performances en tension au courant nominal durant les différentes campagnes. Une méthodologie proposant une dissociation des dynamiques réversibles et irréversibles de décroissance de la tension de la PàC au cours du temps est ensuite exposée et sert de base à la construction d’un modèle de dégradation de la tension sur un fonctionnement à courant fixe. Le modèle montre des résultats encourageants et une perspective liée à son utilisation dans le cadre du pronostic est suggérée. La question de la sensibilité du vieillissement aux variations dynamiques de la charge est ensuite abordée de manière complémentaire à ces essais d’endurance (effectués à charge constante) via une campagne de vieillissement effectuée sur des monocellules hybridées ou non directement par des supercondensateurs et cyclant sur un profil de courant dynamique. Une comparaison des évolutions des performances des monocellules au cours du temps dans les deux cas (hybridé et non-hybridé) est effectuée et met en avant l’effet du cyclage dynamique sur la dégradation des performances des PàC. La deuxième thématique touchant les méthodes et outils dédiés à l’évaluation de l’état de santé de la PàC durant son fonctionnement est introduite dans la suite de ces travaux en se penchant notamment sur une des causes majeures de la fin de vie des PàC : l’accroissement du crossover d’H2 vers l’O2 lié à la perte d’étanchéité interne de la membrane. Des mesures de tension à vide (OCV) effectuées lors de phases d’arrêt/démarrage sont scrutées a posteriori pour une des campagnes de la base de données d’essais en endurance. L’objectif est de rechercher des éventuelles corrélations entre l’accroissement des fuites internes et l’évolution de ces mesures au cours du temps afin de développer des potentiels indicateurs des fuites internes. Une séquence opératoire de mise en gaz mettant en avant un lien entre le niveau de crossover d’H2 et la vitesse d’effondrement de l’OCV pour certaines cellules du stack est identifiée et reproduite à l’occasion d’une campagne complémentaire d’essais. Une dernière partie du manuscrit est finalement consacrée à une approche théorique prospective dédiée à l’intégration d’un phénomène parasite, l’oxydation du Pt, dans la modélisation des performances statiques et dynamiques d’une PàC. Les retombées attendues portent sur l’amélioration de l’interprétation des caractérisations menées régulièrement (EIS, OCV, balayages sinus de forte amplitude aux très basses fréquences…), permettant le suivi du vieillissement. / This thesis work deals with the thematic of the Low Temperature Proton Exchange Membrane (PEM LT) Fuel Cell (FC) aging. The use of a FC inside a H2 battery (association of a FC, an electrolyzer and H2 / O2 tanks) in a stationary context is considered in an island micro-grid based on renewable energies (wind and solar power). Two axes linked with the FC use and aging in this context are investigated in this work: one of the axes is centered in the study of the FC performance decrease dynamics over time and the other on the development of methods and tools dedicated to the state of health monitoring during the FC operation. The first thematic is introduced through the exploitation of several aging campaigns performed on PEM FC stack prototypes under constant current solicitations. The stacks considered are fed with pure O2 on the cathode side. A focus is made on the aging heterogeneity inside the stacks and a decoupling between the nominal voltage degradation dynamics and the development of the H2 internal leak with time is highlighted for the different stacks and campaigns. A generic methodology dissociating the reversible and the irreversible voltage losses dynamics is proposed and is further used as a basis to model the nominal voltage degradation with time. The model built in this way is showing encouraging results and its potential use for prognostic purpose is suggested. Whereas these investigations focus on the FC performance degradations under constant current solicitation, the impact of load current dynamic variations on the FC aging is also treated with an experimental study performed on single cells. An ageing campaign under a dynamic load profile is performed on several single cells directly hybridized or not by supercapacitors. The hybridized cells are cycling on an almost-constant current profile whereas the non-hybridized cells are cycling on a dynamic one. A comparison of the performances evolution with time in both cases (hybridized and nothybridized) is done and highlights the effect of the dynamic cycling on the FC performance degradation. The second thematic dealing with the FC state of health evaluation is introduced with one of the main causes of the FC end-of-life: the development of the H2 internal leak between the anode and cathode compartments. Open Circuit Voltage (OCV) measurements performed during start-up and shut-down routines phases are scanned a posteriori in one of the aging campaign of the database. The objective is to seek some potential correlations between those OCV measurements and the H2 internal leak increase over time in order to develop internal leak indicators. A gases introduction operating sequence highlighting a link between the internal leak level and the OCV drift for some stack’s cells is identified during some start-up phases and reproduced during a complementary campaign. A last part of the manuscript is finally dedicated to the integration of a parasitic mechanism (the Pt oxidation) into the FC theoretical quasi-static and dynamic performance modeling. The model integrating this phenomenon is showing some abilities to explain and analyze several experimental features observed on classical performance characterization measurements (EIS, OCV measurements, large amplitude sinus sweep at very low frequency…), opening some perspectives for the FC state of health monitoring.

Page generated in 0.0676 seconds