Spelling suggestions: "subject:"self supervised"" "subject:"elf supervised""
71 |
Machine Learning Approaches for Speech ForensicsAmit Kumar Singh Yadav (19984650) 31 October 2024 (has links)
<p dir="ltr">Several incidents report misuse of synthetic speech for impersonation attacks, spreading misinformation, and supporting financial frauds. To counter such misuse, this dissertation focuses on developing methods for speech forensics. First, we present a method to detect compressed synthetic speech. The method uses comparatively 33 times less information from compressed bit stream than used by existing methods and achieve high performance. Second, we present a transformer neural network method that uses 2D spectral representation of speech signals to detect synthetic speech. The method shows high performance on detecting both compressed and uncompressed synthetic speech. Third, we present a method using an interpretable machine learning approach known as disentangled representation learning for synthetic speech detection. Fourth, we present a method for synthetic speech attribution. It identifies the source of a speech signal. If the speech is spoken by a human, we classify it as authentic/bona fide. If the speech signal is synthetic, we identify the generation method used to create it. We examine both closed-set and open-set attribution scenarios. In a closed-set scenario, we evaluate our approach only on the speech generation methods present in the training set. In an open-set scenario, we also evaluate on methods which are not present in the training set. Fifth, we propose a multi-domain method for synthetic speech localization. It processes multi-domain features obtained from a transformer using a ResNet-style MLP. We show that with relatively less number of parameters, the proposed method performs better than existing methods. Finally, we present a new direction of research in speech forensics <i>i.e.</i>, bias and fairness of synthetic speech detectors. By bias, we refer to an action in which a detector unfairly targets a specific demographic group of individuals and falsely labels their bona fide speech as synthetic. We show that existing synthetic speech detectors are gender, age and accent biased. They also have bias against bona fide speech from people with speech impairments such as stuttering. We propose a set of augmentations that simulate stuttering in speech. We show that synthetic speech detectors trained with proposed augmentation have less bias relative to detector trained without it.</p>
|
72 |
<b>Speech Forensics Using Machine Learning</b>Kratika Bhagtani (20699921) 10 February 2025 (has links)
<p dir="ltr">High quality synthetic speech can now be generated and used maliciously. There is a need of speech forensic tools to detect synthetic speech. Besides detection, it is important to identify the synthesizer that was used for generating a given speech. This is known as synthetic speech attribution. Speech editing tools can be used to create partially synthetic speech in which only parts of speech are synthetic. Detecting these synthetic parts is known as synthetic speech localization.</p><p dir="ltr">We first propose a method for synthetic speech attribution known as the Patchout Spectrogram Attribution Transformer (PSAT). PSAT can distinguish unseen speech synthesis methods (<i>unknown </i>synthesizers) from the methods that were seen during its training (<i>known </i>synthesizers). It achieves more than 95% attribution accuracy. Second, we propose a method known as Fine-Grain Synthetic Speech Attribution Transformer (FGSSAT) that can assign different labels to different <i>unknown </i>synthesizers. Existing methods including PSAT cannot distinguish between different <i>unknown </i>synthesizers. FGSSAT improves on existing work by doing a fine-grain synthetic speech attribution analysis. Third, we propose Synthetic Speech Localization Convolutional Transformer (SSLCT) and achieve less than 10% Equal Error Rate (EER) for synthetic speech localization. Fourth, we demonstrate that existing methods do not perform well for recent diffusion-based synthesizers. We propose the Diffusion-Based Synthetic Speech Dataset (DiffSSD) consisting of about 200 hours of speech, including synthetic speech from 8 diffusion-based open-source and 2 commercial generators. We train speech forensic methods on this dataset and show its importance with respect to recent open-source and commercial generators.</p>
|
73 |
Towards meaningful and data-efficient learning : exploring GAN losses, improving few-shot benchmarks, and multimodal video captioningHuang, Gabriel 09 1900 (has links)
Ces dernières années, le domaine de l’apprentissage profond a connu des progrès énormes dans des applications allant de la génération d’images, détection d’objets, modélisation du langage à la réponse aux questions visuelles. Les approches classiques telles que l’apprentissage supervisé nécessitent de grandes quantités de données étiquetées et spécifiques à la tâches. Cependant, celles-ci sont parfois coûteuses, peu pratiques, ou trop longues à collecter. La modélisation efficace en données, qui comprend des techniques comme l’apprentissage few-shot (à partir de peu d’exemples) et l’apprentissage self-supervised (auto-supervisé), tentent de remédier au manque de données spécifiques à la tâche en exploitant de grandes quantités de données plus “générales”. Les progrès de l’apprentissage profond, et en particulier de l’apprentissage few-shot, s’appuient sur les benchmarks (suites d’évaluation), les métriques d’évaluation et les jeux de données, car ceux-ci sont utilisés pour tester et départager différentes méthodes sur des tâches précises, et identifier l’état de l’art. Cependant, du fait qu’il s’agit de versions idéalisées de la tâche à résoudre, les benchmarks sont rarement équivalents à la tâche originelle, et peuvent avoir plusieurs limitations qui entravent leur rôle de sélection des directions de recherche les plus prometteuses. De plus, la définition de métriques d’évaluation pertinentes peut être difficile, en particulier dans le cas de sorties structurées et en haute dimension, telles que des images, de l’audio, de la parole ou encore du texte. Cette thèse discute des limites et des perspectives des benchmarks existants, des fonctions de coût (training losses) et des métriques d’évaluation (evaluation metrics), en mettant l’accent sur la modélisation générative - les Réseaux Antagonistes Génératifs (GANs) en particulier - et la modélisation efficace des données, qui comprend l’apprentissage few-shot et self-supervised. La première contribution est une discussion de la tâche de modélisation générative, suivie d’une exploration des propriétés théoriques et empiriques des fonctions de coût des GANs. La deuxième contribution est une discussion sur la limitation des few-shot classification benchmarks, certains ne nécessitant pas de généralisation à de nouvelles sémantiques de classe pour être résolus, et la proposition d’une méthode de base pour les résoudre sans étiquettes en phase de testing. La troisième contribution est une revue sur les méthodes few-shot et self-supervised de détection d’objets , qui souligne les limites et directions de recherche prometteuses. Enfin, la quatrième contribution est une méthode efficace en données pour la description de vidéo qui exploite des jeux de données texte et vidéo non supervisés. / In recent years, the field of deep learning has seen tremendous progress for applications ranging from image generation, object detection, language modeling, to visual question answering. Classic approaches such as supervised learning require large amounts of task-specific and labeled data, which may be too expensive, time-consuming, or impractical to collect. Data-efficient methods, such as few-shot and self-supervised learning, attempt to deal with the limited availability of task-specific data by leveraging large amounts of general data. Progress in deep learning, and in particular, few-shot learning, is largely driven by the relevant benchmarks, evaluation metrics, and datasets. They are used to test and compare different methods on a given task, and determine the state-of-the-art. However, due to being idealized versions of the task to solve, benchmarks are rarely equivalent to the original task, and can have several limitations which hinder their role of identifying the most promising research directions. Moreover, defining meaningful evaluation metrics can be challenging, especially in the case of high-dimensional and structured outputs, such as images, audio, speech, or text. This thesis discusses the limitations and perspectives of existing benchmarks, training losses, and evaluation metrics, with a focus on generative modeling—Generative Adversarial Networks (GANs) in particular—and data-efficient modeling, which includes few-shot and self-supervised learning. The first contribution is a discussion of the generative modeling task, followed by an exploration of theoretical and empirical properties of the GAN loss. The second contribution is a discussion of a limitation of few-shot classification benchmarks, which is that they may not require class semantic generalization to be solved, and the proposal of a baseline method for solving them without test-time labels. The third contribution is a survey of few-shot and self-supervised object detection, which points out the limitations and promising future research for the field. Finally, the fourth contribution is a data-efficient method for video captioning, which leverages unsupervised text and video datasets, and explores several multimodal pretraining strategies.
|
Page generated in 0.0415 seconds