Spelling suggestions: "subject:"selfassembled."" "subject:"selfassembledm.""
21 |
Aza-bix(oxazoline) Copper Complexes Immobilized onto Self-Assembled Monolayers Supports: Surface Environment, Recycling, and Versatility StudyPaluti, Christy 20 September 2011 (has links)
The design, effectiveness and versatility of the self-assembled monolayer-immobilized aza-bis(oxazoline) catalysts was explored here. The first part of this dissertation focuses on the immobilization of aza-bis(oxazoline) ligand with three different C2 groups onto self-assembled monolayer support material. In the homogeneous phase, the more steric bulk present at the C2 position of the catalytic system, the greater the selectivity. In the heterogeneous systems, those with the least amount of steric bulk had the greatest increase in selectivity compared to their respective homogeneous phase. The supports not only allowed for selectivity enhancements not observed in the homogeneous phase, but also demonstrated the effectiveness of this support material in the cyclopropanation reaction.
<br>Self-assembled monolayer supports allowed for modification of the surface steric environment around the catalytic site. This was accomplished by varying the length of the background alkenethiol chains so that three steric environments were created. The three steric environments were the catalyst above the monolayer surface, level with the monolayer surface, and below the monolayer surface. Modification of the steric environment around the catalyst, in turn allows for control of the selectivity of the heterogeneous catalytic system.
<br>Modification of the surface electronic environment around the catalytic site is accomplished by modification of alkanethiol tail groups. The five background tail groups investigated were hydroxyl, bromide, carboxylic acid, methyl ester, and nitrile. Modification of the background tail groups allows for control of the enantioselectivity in the cyclopropanation reaction.
<br>Self-assembled monolayer supports also allow for the generation of effective reusable heterogeneous catalytic systems. One of the main positive aspects of heterogeneous catalysis is the ability to recycle the catalytic system multiple times without major reduction in selectivity. The duration of these heterogeneous aza-bis(oxazoline) systems is dependent on the stability of the gold substrate layer and the reaction solvent.
<br>The last section of this dissertation focuses on the versatility of the aza-bis(oxazoline) copper complex immobilized onto self-assembled monolayers. The homogeneous and heterogeneous catalysts were investigated in the carbonyl-ene reaction of ethyl glyoxylate and á-methylstyrene. The three heterogeneous catalytic systems were the carboxylic acid surface, hydroxyl surface, and the catalyst above the methyl monolayer surface. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
|
22 |
Synthesis of oligo(lactose)-based thiols and their self-assembly onto gold surfacesFyrner, Timmy, Ederth, Thomas, Aili, Daniel, Liedberg, Bo, Konradsson, Peter January 2013 (has links)
The ability to produce monomolecular coatings with well-defined structural and functional properties is of key importance in biosensing, drug delivery, and many recently developed applications of nanotechnology. Organic chemistry has proven to be a powerful tool to achieve this in many research areas. Herein, we present the synthesis of three oligo(lactosides) glycosylated in a (1 → 3) manner, and which are further functionalized with amide-linked short alkanethiol spacers. The oligosaccharides (di-, tetra-, and hexasaccharide) originate from the inexpensive and readily available lactose disaccharide. These thiolated derivatives were immobilized onto gold surfaces, and the thus formed self-assembled monolayers (SAMs) on planar gold were characterized by wettability, ellipsometry and infrared reflection–absorption spectroscopy. Further, the ability of these SAMs to stabilize gold nanoparticles in saline solutions was also demonstrated, indicating that the oligosaccharides may be used as stabilizing agents in gold nanoparticle-based assays.
|
23 |
Electrochemical and infrared spectroscopy studies of an ionizable self-assembled monolayerRosendahl, Scott Michael 21 October 2009
Switchable surfaces, also called smart surfaces or controllable surfaces, respond to changes in their local environment resulting in altered surface properties. There are various environmental perturbations that can cause changes to the surface properties but the focus of this thesis is on the affect of electrostatic potential. Significant evidence is provided from previous reports on electrochemical and infrared spectroscopic experiments suggesting that self-assembled monolayers (SAMs) of 4-mercaptobenzoic acid (4-MBA) undergo protonation-deprotonation by the application of an electric field. However, there are plenty of aspects of this electric field driven protonation-deprotonation mechanisms using carboxylic acid terminated SAMs that are not well understood. Most importantly, there is a lack of model independent measurements to validate this process. As such, experimental techniques utilizing infrared spectroscopy were employed to correlate electrochemical measurements and models.<p>
This body of work demonstrates the importance of the intermolecular hydrogen bonding network on the measured voltammetric peak associated with the protonation-deprotonation of these SAMs. The voltammetric peak height diminishes with increasing exposure to an electrolyte solution. This behaviour is attributed to the replacement of the carboxylic acid protons with electrolyte cations and ultimately the disruption of the hydrogen bonded network.<p>
We attempted to further our ex-situ infrared measurements by using an in-situ spectroelectrochemical technique. We had some initial successes, presented within, but more work is needed to complete this picture and is beyond the scope of this thesis. To summarize, the protonated state of SAMs of 4-MBA can be driven by the application of an electric field providing a potential platform to build a controllable smart surface.
|
24 |
Electrochemically deposited metal nanostructures for application in genosensorsSoreta, Tesfaye Refera 17 December 2009 (has links)
Las señales de los biosensores se pueden mejorar mediante el diseño de superficies transductoras. En este sentido, se han investigado diversos métodos para la nanoestructuración de superficies. El primero de ellos se basó en la formación inicial de monocapas autoensambladas (SAM) de alcanotioles sobre sustratos bimetálicos, seguida de la desorción reductiva selectiva (SRD) de las SAM de determinados metales. Se consiguió la SRD de 2-mercaptoetanol de dominios de paladio desde una superficie de platino-oro. El segundo método para preparar superficies nanoestructuradas que se investigó fue la nucleación electroquímica secuencial de las nanopartículas metálicas (oro y paladio) sobre electrodos de carbón vidrio para las SAM de alcanotiol y para aumentar la densidad de las nanopartículas sin permitir la formación de agregados. Con este método, las señales redox de las SAM alcanotiol ferrocenil eran seis y cincuenta veces mejores que los electrodos de oro y paladio, respectivamente. Finalmente, se demostró la nanoestructuración de las superficies de los electrodos para mejorar la señal de un biosensor de ADN. / Biosensor signals can be enhanced by specifically designing transducer surfaces. In this thesis, several surface nanostructuring approaches have been investigated. The first approach studied was based on the initial formation of self-assembled monolayers (SAM) of alkanethiols on bi-metallic substrates, followed by the selective reductive desorption (SRD) of the SAM from one of the metals. SRD of 2-mercaptoethanol from palladium domains of a palladium-gold surface was achieved. The second nanostructured surface preparation method investigated was the sequential electrochemical nucleation of metal nanoparticles (gold and palladium) on glassy carbon electrode and SAM formation on the NPs to prevent aggregation and by that increasing the number densities. With this method, a six-fold and a fifty fold enhancement in the ferrocenyl alkanethiol SAM redox signal was achieved in comparison to plain gold and palladium electrodes, respectively. Finally, electrode surface nanostructuring using sequentially nucleated gold nanoparticles for signal enhancement of DNA biosensor was demonstrated.
|
25 |
Electrochemical and infrared spectroscopy studies of an ionizable self-assembled monolayerRosendahl, Scott Michael 21 October 2009 (has links)
Switchable surfaces, also called smart surfaces or controllable surfaces, respond to changes in their local environment resulting in altered surface properties. There are various environmental perturbations that can cause changes to the surface properties but the focus of this thesis is on the affect of electrostatic potential. Significant evidence is provided from previous reports on electrochemical and infrared spectroscopic experiments suggesting that self-assembled monolayers (SAMs) of 4-mercaptobenzoic acid (4-MBA) undergo protonation-deprotonation by the application of an electric field. However, there are plenty of aspects of this electric field driven protonation-deprotonation mechanisms using carboxylic acid terminated SAMs that are not well understood. Most importantly, there is a lack of model independent measurements to validate this process. As such, experimental techniques utilizing infrared spectroscopy were employed to correlate electrochemical measurements and models.<p>
This body of work demonstrates the importance of the intermolecular hydrogen bonding network on the measured voltammetric peak associated with the protonation-deprotonation of these SAMs. The voltammetric peak height diminishes with increasing exposure to an electrolyte solution. This behaviour is attributed to the replacement of the carboxylic acid protons with electrolyte cations and ultimately the disruption of the hydrogen bonded network.<p>
We attempted to further our ex-situ infrared measurements by using an in-situ spectroelectrochemical technique. We had some initial successes, presented within, but more work is needed to complete this picture and is beyond the scope of this thesis. To summarize, the protonated state of SAMs of 4-MBA can be driven by the application of an electric field providing a potential platform to build a controllable smart surface.
|
26 |
Surface Monolayer Initiated Polymerization: A Novel Means of Fabricating Sub - 100 nm FeaturesMcCoy, Kendra Michele 12 April 2004 (has links)
The speed of microelectronic devices is controlled by the size of the transistor gate. In order to create faster devices, the size of this transistor gate must shrink. Microlithography is the method used to define patterns in semiconductor devices, and it is optimized periodically to create smaller features. It is a subtractive process that relies on the selective removal of sections of a photosensitive polymeric film called photoresist. This photoresist is exposed to patterned ultraviolet radiation that changes the local solubility of the film and allows for the creation of relief patterns in the resist using a developing solvent. Decreasing the wavelength of the light used to expose the patterns is the primary method for decreasing the minimum feature size that can be printed by this process. There are a number of challenges associated with decreasing the exposure wavelength for conventional lithographic processes. First of all, the polymeric films must be transparent at the exposure wavelength in order to allow light to propagate through the entire thickness of the film. Secondly, there is a limit in the thickness of the photoresist films that can be used. This thickness limits the etch resistance of the film. In fact, the issues concerning etch resistance and transparency are generally in opposition. This makes designing photoresist platforms for future lithographic applications very difficult. Therefore, to overcome these limitations, we are developing an unconventional approach to microlithography. In our approach, entitled Surface Monolayer Initiated Polymerization, polymer structures are formed on a surface by polymerizing a monomer in a patterned fashion using a self-assembled monolayer that can be locally activated to initiate the reaction. This process has been demonstrated by creating patterned polystyrene films on native silicon dioxide surfaces. In these initial studies, it took more than one day to create features. This is unacceptable for a lithographic application. The kinetics of all the processes involved in making these patterned layers is described. Along with these rate constants, means of optimizing these rates are also presented. Additionally, the patterns grown in these initial studies exhibited poor uniformity. Methods of optimizing the patterns formed are also presented.
|
27 |
Surface-directed assembly of fibrillar extracellular matricesCapadona, Jeffrey R. 21 April 2005 (has links)
Biologically-inspired materials have emerged as promising substrates for enhanced repair in various therapeutic and regenerative medicine applications, including nervous and vascular tissues, bone, and cartilage. These strategies focus on the development of materials that integrate well-characterized domains from biomacromolecules to mimic individual functions of the extracellular matrix (ECM), including cell adhesive motifs, growth factor binding sites, and protease sensitivity. A vital property of the ECM is the fibrillar architecture arising from supramolecular assembly. For example, the fibrillar structure of fibronectin (FN) matrices modulates cell cycle progression, migration, gene expression, cell differentiation, and the assembly of other matrix proteins. Current biomaterials do not actively promote deposition and assembly of ECM. In this research, we describe the rational design and investigation of non-fouling biomimetic surfaces in which an oligopeptide sequence (FN13) from the self-assembly domain of FN is tethered to non-fouling substrates. This surface modification directs cell-mediated co-assembly of robust fibrillar FN and type I collagen (COL) matrices reminiscent of ECM, and increases in cell proliferation rates. Furthermore, the effect of this peptide is surface-directed, as addition of the soluble peptide has no effect on matrix assembly. We have also identified a critical surface density of the immobilized peptide to elicit the full activity. These results contribute to the development and design of biomimetic surface modifications that direct cell function for biomedical and biotechnology applications.
|
28 |
Self-assembled nano metal processes for enhancing light extraction efficiency of GaN light-emitting diodePo, Jung-chin 27 July 2012 (has links)
In this thesis, we use self-assembled nano metal particles as a dry etching mask to from nanopillars. The nanopillars integrated with traditional light-emitting diode (LED) p-type GaN surface is designed to increase the light extraction efficiency. The initial fabrication process adopted in this study is using 100nm SiO2 as thermal aggregation layer. The poor thermal conductivity of SiO2 material will help to accumulate heat on the surface. Then, 10nm Ni thin film is deposited on the SiO2, and rapid annealed at 900oC (working pressure of 1~3¡Ñ10-6 Torr). The Ni nanospheres are prepared to integrate with LED chip processes.
We use the etching times (pillar heights) as experimental parameters to study the degree of light extraction efficiency. Traditional right angle branch electrode samples of as grown, 20, 30, 40 sec etching time are analyzed by LI curve measurement. Under 20mA injection current, samples with 20, 30, 40 sec etching times have better light extraction than as grown, an increase of 6.54%, 3.27%, 1.63%, respectively. The experimental results reveal that self-assembled nano metal particles as a dry etching mask on the p-type GaN LED surface can increase the light extraction efficiency.
|
29 |
Characterization Of The Local Electrical Environment In An Electrically-guided Protein Patterning System Incorporating Antifouling Self-assembled MonolayerPark, Jinseon 2010 August 1900 (has links)
In earlier research in our lab, the manipulation of microtubules on gold patterned silicon wafers was achieved by E-beam lithography, Poly (ethylene glycol) self assembled monolayers (PEG-SAMs) and electrophoresis. To develop a technique for delicate single microtubule manipulation, further studies need to be done on PEG-SAMs and electrophoresis. As a foundation of this goal, we examined the electric field in an aqueous solution between two planar electrodes and the compatibility of the antifouling property of PEG-SAMs with the electric field. For this purpose, the distribution of microbeads was analyzed using a Boltzmann distribution. The amount of adsorbed microtubules on a PEG-SAM was examined to test the compatibility of the antifouling property of a PEG-SAM with concomitant exposure to electric field. It is shown that the product of the electric field and the effective charge of the microbead does not have a linear relation with the applied electric potential but an exponentially increasing function with respect to the potential. The antifouling property of the PEG-SAM was not retained after an exposure to the electric field.
|
30 |
AFM-Based Nanolithography and Detection of DNA Hybridization Reactions at the NanoscaleLo, Shu-ting 23 July 2007 (has links)
High-resolution lattice periodicity images of a variety of well-defined surfaces, including graphite, mica, and Au(111), validated the good stability of our atomic force microscope (AFM) system. Combining self-assembled monolayer (SAM) and AFM technology, we demonstrated the capabilities of pattern fabrication as well as modification of surface functionality. AFM-based nanolithography operating conditions, such as scan rate, deflection setpoint, and number of scan were studied to obtain the optimized quality of the fabricated patterns. Thiolated-DNA probe molecules could be patterned at a nanometer scale on a gold substrate. However, we found that the surface coverage began to drop notably with the probe length (number of DNA bases). Therefore, the displaced DNA molecules during nanoshaving were reversibly adsorbed, and patterning became unreliable. We were unsuccessful in detecting the subsequent hybridization reactions at these nanopatterns from AFM measurements. To realize the DNA hybridization, further studies on the incubation temperature, probe length and even DNA sequences are required to demonstrate that this AFM-based gene diagnostic method is truly operational.
|
Page generated in 0.0335 seconds