• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recyclable self-reinforced ductile fiber composite materials for structural applications

Schneider, Christof January 2015 (has links)
Lightweight structures in vehicles are a proven way to reduce fuel consumption and the environmental impact during the use. Lower structural weight can be achieved by using high performance materials such as composites or using the material efficiently as a sandwich structure. Traditional composite materials such as carbon or glass fiber reinforced polymers have high weight specific mechanical properties but are inherently brittle and expensive. They consist of at least two different materials making recycling a difficult endeavor.The best composite material would have good weight specific properties and is ductile, cheap and comprises of a reinforcement and matrix material based on the same recyclable material making recycling easy. In self-reinforced polymer (SrP) composite materials, reinforcing fibers and matrix material are based on the same recyclable thermoplastic polymer making recycling to a straightforward process. SrP composite materials are ductile, inexpensive and have a high energy absorption potential. The aim of this thesis is to investigate the potential of SrP composites in structural applications. Firstly, the quasi-static and dynamic tensile and compression properties of a self-reinforced poly(ethylene terephthalate) (SrPET) composite material are investigated confirming the high energy absorption potential. Sandwich structures out of only SrPET with a lattice core are manufactured and tested in quasi-static out-of-plane compression showing the potential of SrPET as core material. Corrugated sandwich structured out of only SrPET are manufactured and tested in out-of-plane compression over a strain rate range10−4 s−1 - 103 s−1. The corrugated SrPET core has similar quasi-static properties as commercial polymeric foams but superior dynamic compression properties. Corrugated sandwich beams out of only SrPET are manufactured and tested in quasi-static three-point bending confirming the high energy absorption potential of SrPET structures. When comparing the SrPET beams to aluminum beams with identical geometry and weight, the SrPET beams shows higher energy absorption and peak load. The experimental results show excellent agreement with finite element predictions. The impact behaviorof corrugated SrPET sandwich beams during three-point bending is investigated. When comparing SrPET sandwich beams to sandwich beams with carbon fiber face sheets and high performance thermoset polymeric foam with the same areal weight, for the same impact impulse per area, the SrPET shows less mid-span deflection. / <p>QC 20151012</p> / ECO2
2

Enhanced Ductility of Masonry Shear Walls Using Laterally Confined (Self-Reinforced) Concrete Block

Joyal, Madeleine 04 1900 (has links)
<p>The aim of the study presented in this dissertation was to investigate a new method of improving the ductility of masonry shear walls by means of confinement. This proprietary method, referred to as Self-Reinforced Concrete Block (SR Block) employs a previously untried technique of molding lateral confining devices into concrete block. This internal reinforcement provides lateral confinement to the enclosed volume of block and grout material. The resulting triaxial state of compressive stress under axial load allows the confined material to maintain high compressive capacity while undergoing high axial compressive strains. The results from a proof-of-concept program indicated improved plasticity due to the presence of the confining devices within the block. Despite spalling of the unconfined portions of the block at high strains, the SR Block specimens retained load carrying capacities in excess of the peak capacity of similar unreinforced/unconfined block prisms at strains beyond 2% with no visible damage to the confining devices or to the confined material. Further to this proof-of-concept study, an experimental program was undertaken involving additional prism tests as well as testing of shear walls constructed with the SR Block. This program proved the efficacy of a second confining device design in enabling prisms to retain compressive load capacity to strains over six times larger than that of standard grouted masonry. Additionally, the results of the shear wall program indicated that these desirable characteristics were effective in a wall configuration and led to significant increases in the displacement ductility of the walls when compared to similar, unconfined walls. The data presented is expected to serve as a basis for future testing and acceptance of SR Block as a method of increasing the compressive strain capacity of reinforced masonry in order to improve the ductility of masonry shear walls as a lateral force resisting system.</p> / Master of Applied Science (MASc)
3

Placas e parafusos polimericos auto-reforçados para fixação interna rigida de fraturas / Self-reinforced polymeric plates and screws for rigid internal fixation of fractures

Morita, Augusto Teruo 15 March 2006 (has links)
Orientador: Marco-Aurelio De Paoli / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-06T15:37:34Z (GMT). No. of bitstreams: 1 Morita_AugustoTeruo_D.pdf: 5448584 bytes, checksum: b45ea2a6a097d79180fbd6e43996e982 (MD5) Previous issue date: 2006 / Resumo: O objetivo deste trabalho foi preparar placas e parafusos auto-reforçados a partir do copolímero poli(L/DL ácido láctico), para serem utilizados na fixação interna rígida de fraturas. Este copolímero pode ser hidrolisado quando inserido no corpo humano e seus produtos de degradação são expelidos através do ciclo metabólico. Foi construído um aparelho de autoreforçamento que deve ser acoplado a uma Máquina Universal de Ensaios, capaz de orientar uniaxialmente amostras poliméricas através da passagem por uma matriz aquecida de dimensões menores que a amostra. Foram realizados ensaios prévios de auto-reforçamento com amostras de poliestireno. Ensaios de auto-reforçamento com o copolímero poli(L/DL ácido láctico) mostraram que o auto-reforçamento induziu um aumento nas propriedades mecânicas, medidas sob flexão, de ~60% no módulo de elasticidade e de ~90% na tensão máxima. A amostra moldada apresentou linhas brancas quando dobrada a temperatura ambiente, indicando a fragilização. Por outro lado, as amostras auto-reforçadas podem ser dobradas a temperatura ambiente sem que ocorresse ruptura frágil ou fragilização. Através de ensaios de difração de raios-X determinou-se que a amostra é semi-cristalina após o auto-reforçamento, apesar dos ensaios de calorimetria diferencial de varredura não identificarem positivamente a formação desta estrutura semi-cristalina. A esterilização por raios-g causa uma grande queda na massa molar, porém não altera as propriedades mecânicas. Ensaios de degradação in-vitro, com solução tampão de fosfato numa temperatura de 37 °C, das amostras esterilizadas mostraram que a massa molar sofre uma queda durante todo o ensaio de degradação e as propriedades mecânicas sofrem uma pequena queda após 15 semanas. As amostras auto-reforçadas podem ser usinadas na forma de placas e parafusos. As placas usinadas do copolímero de poli(ácido láctico) ainda podem ser dobradas a temperatura ambiente sem que ocorra quebra ou formação de linhas brancas / Abstract: In this work self-reinforced plates and screws to be used for rigid internal fixation of fractures were produced using the poly(L/DL-lactic acid) copolymer. This copolymer can be hydrolyzed when implanted in the human body and its degradation products are expelled by the metabolic cycle. A self-reinforcement module was built. It can be attached to a Universal Mechanical Testing Machine, which is capable to uni-axially orient the polymeric sample though a heated die. Initial tests of processing and self-reinforcement were conducted with polystyrene. Self-reinforcement tests were conducted with the poly(L/DL-lactic acid) copolymer. The results show that the die-drawing process induced an increase in the flexural mechanical properties of ~60% in the elastic modulus and of ~90% in the maximum tension, both measured under flexion conditions. White lines (crazing) appears when the molded sample was bent at ambient temperature, whereas the self-reinforced sample could be bent in the same conditions without fracture or sample fragilization. X-ray diffraction results indicated that the self-reinforced sample exhibits a semi-crystalline structure; notwithstanding the differential scanning calorimetry results do not conclusively identify the sample morphology. g-rays sterilization caused a decrease in the molar mass, but the mechanical properties were not affected. In-vitro degradation test were conducted at 37 °C in a buffered aqueous solution. Sterilized samples show a larger decrease in the molar mass since the beginning of the test, but the mechanical properties exhibits a smaller decrease during the test. The self-reinforced samples can be molded to the form of plates and screws. The final sample could be bent at ambient temperature without fragilization / Doutorado / Quimica Inorganica / Doutor em Ciências

Page generated in 0.0382 seconds