Spelling suggestions: "subject:"selfsimilar processes"" "subject:"besimilar processes""
1 |
Characterization of Web server workloadSangle, Amit. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains viii, 80 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 79-80).
|
2 |
Self-similar sets and Martin boundaries. / CUHK electronic theses & dissertations collectionJanuary 2008 (has links)
In [DS1,2,3], Denker and Sato initiated a new point of view to study the problem. They identified the Sierpinski gasket as a Martin boundary of some canonical Markov chain and used the associated theory to consider the problem. In this thesis, we will extend their result so as to be applicable to all single-point connected monocyclic post critically finite (m.p.c.f.) self-similar sets. / In the first chapter, we review some basic facts of the self-similar sets and the Martin boundaries, and we prove that every m.p.c.f. self-similar set K is homeomorphic to the quotient space of the symbolic space associated with K, moreover, the homeomorphism is a Lipschitz equivalence for some special m.p.c.f. self-similar sets. / In the second chapter, we first prove that the quotient space of the symbolic space associated with K is homeomorphic to the Martin boundary with respect to the state space associated with K if K is a single-point connected m.p.c.f. self-similar set. Combining this result and the result in the first chapter, we conclude that every single-point connected m.p.c.f. self-similar set can be identified with the Martin boundary of some canonical Markov chain. Then for the 3-level Sierpinski gasket, we prove that there exists a one to one relation between the strongly P-harmonic functions on the 3 state space and K-harmonic functions constructed by Kigami. / In the third chapter, we define a new Markov chain on the pentagasket K which is a single-point connected m.p.c.f. self-similar also. Under the new Markov chain, we prove that K can be identified with the Martin boundary of the new Markov chain and that there exists a one to one relation between the strongly P-harmonic functions and the K-harmonic functions. / One of the fundamental problems in fractal analysis is to construct a Laplacian on fractals. Since fractals, like the Sierpinski gasket and the pentagasket, do not have any smooth structures, it is not possible to construct it from the classical point of view. Hence, until now there is no systematic way to define such a notion on the general class of fractals. / There are two approaches for the problem which have achieved some success in certain special situations. The first one is a probabilistic approach via constructing Brownian motions on self-similar sets. The second approach is an analytical one proposed by Kigami. He approximated the underlying self-similar set K by an increasing sequence of finite sets equipped with the discrete Laplacians Hm in a consistent way. He showed that if K is strongly symmetric, then Hm converge to a Laplacian on K. / by Ju, Hongbing. / "March 2008." / Adviser: Lau Ka Sing. / Source: Dissertation Abstracts International, Volume: 70-03, Section: B, page: 1702. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (p. 91-94). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
3 |
Fractal analysis of self-similar groups.January 2012 (has links)
分形分析的主題是研究分形上的Dirichlet形式和Laplacian. 壓縮的自相似群有一個與之關聯的極限空間,此空間通常具備分形結構,因而引發了分形分析和自相似群兩個分支的結合. / 我們回顧了自相似群和它們的極限空間極限空間可以用Schreier 圖來逼近,事實上其可以看成由Schreier圖構造出來的雙曲圖的雙曲邊界.我們探究了迭代單值群. 通過增加專門的條件我們可以得到迭代單值群的極限空間同胚於某個Julia集. / 通過運用[31] 中的想法和[47] 中自相似隨機游動的方法,我們闡明了極限空間上Laplacian和Dirichlet形式的構造步驟我們介紹了加法器, Basilica群以及Hanoi塔群的極限空間(在第三種情況下是Sierpiríski墊片)上的Laplacian 這裡得到的Dirichlet形式是局部且正則的. / 通過採用[53] 的設置, 我們描述了加法器的極限空間上的誘發型Dirichlet形式在構造了加法器的自相似圖上的嚴格可逆隨機游動後,我們可以得到一個非局部的Dirichlet形式. / The major theme of fractal analysis is studying Dirichlet forms and Laplacians on fractals. For a contracting self-similar group there is an associated limit space, which usually exhibits a fractal structure, thereby triggering the combination of fractal analysis and self-similar groups. / We give reviews of self-similar groups and their limit spaces. Limit space can be approximated by Schreier graphs, and it is in fact identied as a hyperbolic boundary of a hyperbolic graph constructed from Schreier graphs. We explore the iterated monodromy groups. By adding technical conditions, we have that the limit space of an iterated monodromy group is homeomorphic to a Julia set. / We show the construction process of Laplacians and Dirichlet forms on limit spaces using the idea of [31] and the method of self-similar random walks from [47]. We present examples of Laplacians of the limit spaces of adding machine, the Basilica group and the Hanoi Tower group (it is Sierpi´nski gasket in this case). In this context these forms are local and regular. / We describe the induced Dirichlet forms on limit space of the adding machine by adopting the settings of [53] . By constructing strictly reversible random walks on self-similarity graph of the adding machine, we can obtain a non-local Dirichlet form. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Lin, Dateng. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 71-76). / Abstracts also in Chinese. / Chapter 1 --- Introduction --- p.6 / Chapter 1.1 --- Review of fractal analysis --- p.6 / Chapter 1.2 --- Applications to self-similar groups --- p.7 / Chapter 1.3 --- Boundary theory method --- p.8 / Chapter 1.4 --- Summary of the thesis --- p.9 / Chapter 2 --- Self-similar groups --- p.11 / Chapter 2.1 --- Basic definitions --- p.11 / Chapter 2.2 --- Limit spaces of self-similar groups --- p.18 / Chapter 2.3 --- Schreier graphs approximations --- p.24 / Chapter 2.4 --- Iterated monodromy groups --- p.28 / Chapter 3 --- Construction of Laplacians on limit spaces --- p.35 / Chapter 3.1 --- Dirichlet forms, Laplacians and resistance forms --- p.35 / Chapter 3.2 --- Representations of groups and functions --- p.42 / Chapter 3.3 --- Laplacians on limit spaces --- p.45 / Chapter 4 --- Induced Dirichlet form on limit space of the adding machine --- p.53 / Chapter 4.1 --- Martin boundary and hyperbolic boundary --- p.53 / Chapter 4.2 --- Graph energy and the induced form --- p.62 / Chapter 4.3 --- Induced Dirichlet form of the adding machine --- p.65 / Bibliography --- p.71
|
4 |
Multiscale Statistical Analysis of Self-Similar Processes with Applications in Geophysics and Health InformaticsShi, Bin 14 April 2005 (has links)
In this dissertation, we address the statistical analysis under
the multiscale framework for the self-similar process. Motivated
by the problems arising from geophysics and health informatics, we
develop a set of statistical measures as discriminative summaries
of the self-similar process. These measures include Multiscale
Schur Monotone (MSM) measures, Geometric Attributes of
Multifractal Spectrum (GAMFS), Quasi-Hurst exponents, Mallat
Model and Tsallis Maxent Model. These measures are used as
methods to quantify the difference (or similarities) or as input
(feature) vectors in the classification model. As the cornstone of
GAMFS, we study the estimation of multifractal spectrum and adopt
a Weighted Least Squares (WLS) schemes in the wavelet domain to
minimize the heteroskedastic effects , which is inherent because
the sample variances of the wavelet coefficients depend on the scale.
We also propose a Combined K-Nearest-Neighbor classifier (Comb-K-NN)
to address the inhomogeneity of the class attributes,
which is indicated by the large variations between subsets of
input vectors. The Comb-K-NN classifier stabilizes the variations
in the sense of reducing the misclassification rates. Bayesian
justifications of Comb-K-NN classifier are provided.
GAMFS, Quasi-Hurst exponents, Mallat Model and Tsallis Maxent
Model are used in the study of assessing the effects of
atmospheric stability on the turbulence measurements in the
inertial subrange. We also formulate the criteria for success in
evaluating how atmospheric stability alters the MFS of a single
flow variable time series as a statistical classification model.
We use the multifractal discriminate model as the solution of this
problem. Also, high frequency pupil-diameter dynamic measurements,
which are well documented as measures of mental workload, are
summarized using both GAMFS and MSM. These summaries are further
used as the feature vector in the Comb-K-NN classifier. The
serious inhomogeneity among subjects in the same user group makes
classification difficult. These difficulties are overcome by using
Comb-K-NN classifier.
|
5 |
Probabilistic and statistical problems related to long-range dependenceBai, Shuyang 11 August 2016 (has links)
The thesis is made up of a number of studies involving long-range dependence (LRD), that is, a slow power-law decay in the temporal correlation of stochastic models. Such a phenomenon has been frequently observed in practice. The models with LRD often yield non-standard probabilistic and statistical results. The thesis includes in particular the following topics:
Multivariate limit theorems.
We consider a vector made of stationary sequences, some components of which have LRD, while the others do not. We show that the joint scaling limits of the vector exhibit an asymptotic independence property.
Non-central limit theorems.
We introduce new classes of stationary models with LRD through Volterra-type nonlinear filters of white noise. The scaling limits of the sum lead to a rich class of non-Gaussian stochastic processes defined by multiple stochastic integrals.
Limit theorems for quadratic forms.
We consider continuous-time quadratic forms involving continuous-time linear processes with LRD. We show that the scaling limit of such quadratic forms depends on both the strength of LRD and the decaying rate of the quadratic coefficient.
Behavior of the generalized Rosenblatt process.
The generalized Rosenblatt process arises from scaling limits under LRD. We study the behavior of this process as its two critical parameters approach the boundaries of the defining region.
Inference using self-normalization and resampling.
We introduce a procedure called "self-normalized block sampling" for the inference of the mean of stationary time series. It provides a unified approach to time series with or without LRD, as well as with or without heavy tails. The asymptotic validity of the procedure is established.
|
6 |
Self-similarity and exponential functionals of Lévy processes / Auto-similarité et fonctionnelles exponentielles de processus de LévyBartholme, Carine 29 August 2014 (has links)
La présente thèse couvre deux principaux thèmes de recherche qui seront présentés dans deux parties et précédés par un prolegomenon commun. Dans ce dernier nous introduisons les concepts essentiels et nous exploitons aussi le lien entre les deux parties.<p><p>Dans la première partie, le principal objet d’intérêt est la soi-disant fonctionnelle exponentielle de processus de Lévy. La loi de cette variable aléatoire joue un rôle primordial dans de nombreux domaines divers tant sur le plan théorique que dans des domaines appliqués. Doney dérive une factorisation de la loi arc-sinus en termes de suprema de processus stables indépendants et de même index. Une factorisation similaire de la loi arc-sinus en termes de derniers temps de passage au niveau 1 de processus de Bessel peut aussi être établie en utilisant un résultat dû à Getoor. Des factorisations semblables d’une variable de Pareto en termes des mêmes objets peut également être obtenue. Le but de cette partie est de donner une preuve unifiée et une généralisation de ces factorisations qui semblent n’avoir aucun lien à première vue. Même s’il semble n’y avoir aucune connexion entre le supremum d’un processus stable et le dernier temps de passage d’un processus de Bessel, il peut être montré que ces variables aleatoires sont liées à des fonctionnelles exponentielles de processus de Lévy spécifiques. Notre contribution principale dans cette partie et aussi au niveau de caractérisations de la loi de la fonctionnelle exponentielle sont des factorisations de la loi arc-sinus et de variables de Pareto généralisées. Notre preuve s’appuie sur une factorisation de Wiener-Hopf récente de Patie et Savov.<p>Dans la deuxième partie, motivée par le fait que la dérivée fractionnaire de Caputo et d’autres opérateurs fractionnaires classiques coïncident avec le générateur de processus de Markov auto-similaires positifs particuliers, nous introduisons des opérateurs généralisés de Caputo et nous étudions certaines propriétés. Nous nous intéressons particulièrement aux conditions sous lesquelles ces opérateurs coïncident avec les générateurs infinitésimaux de processus de Markov auto-similaires positifs généraux. Dans ce cas, nous étudions les fonctions invariantes de ces opérateurs qui admettent une représentation en termes de séries entières. Nous précisons que cette classe de fonctions contient les fonctions de Bessel modifiées, les fonctions de Mittag-Leffler ainsi que plusieurs fonctions hypergéométriques. Nous proposons une étude unifiant et en profondeur de cette classe de fonctions. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0602 seconds