• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scenario Generation For Vehicles Using Deep Learning / Scenariogenerering för fordon som använder Deep Learning

Patel, Jay January 2022 (has links)
In autonomous driving, scenario generation can play a critical role when it comes to the verification of the autonomous driving software. Since uncertainty is a major component in driving, there cannot be just one right answer to a prediction for the trajectory or the behaviour, and it becomes important to account for and model that uncertainty. Several approaches have been tried for generating the future scenarios for a vehicle and one such pioneering work set out to model the behaviour of the vehicles probabilistically while tackling the challenges of representation, flexibility, and transferability within one system. The proposed system is called the Semantic Graph Network (SGN) which utilizes feedforward neural networks, Gated Recurrent Units (GRU), and a generative model called the Mixed Density Network to serve its purpose. This thesis project set out in the direction of the implementation of this research work in the context of highway merger scenario and consists of three parts. The first part involves basic data analysis for the employed dataset, whereas the second part involves a model that implements certain parts of the SGN including a variation of the context encoding and the Mixture Density Network. The third and the final part is an attempt to recreate the SGN itself. While the first and the second parts were implemented successfully, for the third part, only certain objectives could be achieved. / Vid autonom körning kan scenariegenerering spela en avgörande roll när det gäller verifieringen av programvaran för autonom körning. Eftersom osäkerhet är en viktig komponent i körning kan det inte bara finnas ett rätt svar på en förutsägelse av banan eller beteendet, och det blir viktigt att redogöra för och modellera den osäkerheten. Flera tillvägagångssätt har prövats för att generera framtidsscenarierna för ett fordon och ett sådant banbrytande arbete gick ut på att modellera fordonens beteende sannolikt samtidigt som utmaningarna med representation, flexibilitet och överförbarhet inom ett system hanteras. Det föreslagna systemet kallas Semantic Graph Network (SGN) som använder neurala nätverk, Gated Recurrent Units (GRU) och en generativ modell som kallas Mixed Density Network för att tjäna sitt syfte. Detta examensarbete riktar sig mot genomförandet av detta forskningsarbete i samband med motorvägssammanslagningsscenariot och består av tre delar. Den första delen involverar grundläggande dataanalys för den använda datamängden, medan den andra delen involverar en modell som implementerar vissa delar av SGN inklusive en variation av kontextkodningen och Mixture Density Network. Den tredje och sista delen är ett försök att återskapa själva SGN. Även om den första och den andra delen genomfördes framgångsrikt, kunde endast vissa mål uppnås för den tredje delen.
2

Anemone: a Visual Semantic Graph

Ficapal Vila, Joan January 2019 (has links)
Semantic graphs have been used for optimizing various natural language processing tasks as well as augmenting search and information retrieval tasks. In most cases these semantic graphs have been constructed through supervised machine learning methodologies that depend on manually curated ontologies such as Wikipedia or similar. In this thesis, which consists of two parts, we explore in the first part the possibility to automatically populate a semantic graph from an ad hoc data set of 50 000 newspaper articles in a completely unsupervised manner. The utility of the visual representation of the resulting graph is tested on 14 human subjects performing basic information retrieval tasks on a subset of the articles. Our study shows that, for entity finding and document similarity our feature engineering is viable and the visual map produced by our artifact is visually useful. In the second part, we explore the possibility to identify entity relationships in an unsupervised fashion by employing abstractive deep learning methods for sentence reformulation. The reformulated sentence structures are qualitatively assessed with respect to grammatical correctness and meaningfulness as perceived by 14 test subjects. We negatively evaluate the outcomes of this second part as they have not been good enough to acquire any definitive conclusion but have instead opened new doors to explore. / Semantiska grafer har använts för att optimera olika processer för naturlig språkbehandling samt för att förbättra sökoch informationsinhämtningsuppgifter. I de flesta fall har sådana semantiska grafer konstruerats genom övervakade maskininlärningsmetoder som förutsätter manuellt kurerade ontologier såsom Wikipedia eller liknande. I denna uppsats, som består av två delar, undersöker vi i första delen möjligheten att automatiskt generera en semantisk graf från ett ad hoc dataset bestående av 50 000 tidningsartiklar på ett helt oövervakat sätt. Användbarheten hos den visuella representationen av den resulterande grafen testas på 14 försökspersoner som utför grundläggande informationshämtningsuppgifter på en delmängd av artiklarna. Vår studie visar att vår funktionalitet är lönsam för att hitta och dokumentera likhet med varandra, och den visuella kartan som produceras av vår artefakt är visuellt användbar. I den andra delen utforskar vi möjligheten att identifiera entitetsrelationer på ett oövervakat sätt genom att använda abstraktiva djupa inlärningsmetoder för meningsomformulering. De omformulerade meningarna utvärderas kvalitativt med avseende på grammatisk korrekthet och meningsfullhet såsom detta uppfattas av 14 testpersoner. Vi utvärderar negativt resultaten av denna andra del, eftersom de inte har varit tillräckligt bra för att få någon definitiv slutsats, men har istället öppnat nya dörrar för att utforska.

Page generated in 0.0478 seconds