• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processus Décisionnels de Markov pour l'autonomie ajustable et l'interaction hétérogène entre engins autonomes et pilotés / Markov Decision Processes for adjustable autonomy and heterogeneous interaction between autonomous and piloted robots

Lelerre, Mathieu 17 May 2018 (has links)
Les robots vont être de plus en plus utilisés dans les domaines civils, comme dans le domaine militaire. Ces robots, opérant en flottes, peuvent accompagner des soldats au combat, ou accomplir une mission en étant supervisés par un poste de contrôle. Du fait des exigences d'une opération militaire, il est difficile de laisser les robots décider de leurs actions sans accord d'un opérateur ou surveillance, en fonction de la situation. Dans cette thèse, nous nous attardons sur deux problématiques:D'une part, nous cherchons à exploiter l'autonomie ajustable de sorte à ce qu'un robot puisse accomplir sa mission de la manière la plus efficace possible, tout en respectant des restrictions assignées par un opérateur sur son niveau d'autonomie. Pour cela, celui-ci est en mesure de définir pour un ensemble d'états et d'actions donné un niveau de restriction. Ce niveau peut par exemple imposer au robot la télé-opération pour accéder à une zone à risque.D'autre part, comme nous envisageons la possibilité que plusieurs robots soient déployés en même temps, ces robots doivent se coordonner pour accomplir leurs objectifs. Seulement, comme les opérateurs peuvent prendre le contrôle de certains d'entre eux, la question de la coordination se pose. En effet, l'opérateur ayant ses propres préférences, perception de l'environnement, connaissances et étant sujet aux stress, hésitations, il est difficile de prévoir les actions que celui-ci va effectuer, et donc de s'y coordonner. Nous proposerons dans cette thèse une approche visant à estimer la politique exécutée par un robot télé-opéré à partir d'apprentissage basé sur les actions observés de ce robot.La notion de planification est très présente dans ces travaux. Ceux-ci se baseront sur des modèles de planifications comme les Processus Décisionnels de Markov. / Robots will be more and more used in both civil and military fields. These robots, operating in fleet, can accompany soldiers in fight, or accomplish a mission while being supervised by a control center. Considering the requirement of a military operation, it is complicated to let robots decide their action without an operator agreement or watch, in function of the situation.In this thesis, we focus on two problematics:First, we try to exploit adjustable autonomy to make a robot accomplishes is mission as efficiency as possible, while he respects restrictions, assigned by an operator, on his autonomy level. For this, it is able to define for given sets of states and actions a restriction level. This restriction can force, for example, the need of being tele-operated to access a dangerous zone.Secondly, we consider that several robots can be deployed at the same time. These robots have to coordinate to accomplish their objectives. However, since operators can take the control of some robots, the coordination is harder. In fact, the operator has preferences, perception, hesitation, stress that are not modeled by the agent. It is then hard to estimate his next actions, so to coordinate with him. We propose in this thesis an approach to estimate the policy executed by a tele-operated robot from learning methods, based on observed actions from this robot.The notion of planning his important in these works. These are based on planning models, such as Markov Decision Processes.
2

Assessment of a prediction-based strategy for mixingautonomous and manually driven vehicles in an intersection / Utvärdering av en prediktionsbaserad metod för att blanda autonoma och manuella bilar i en korsning

NADI, ADRIAN, STEFFNER, YLVA January 2017 (has links)
The introduction of autonomous vehicles in traffic is driven by expected gains in multiple areas, such as improvement of health and safety, better resource utilization, pollution reduction and greater convenience. The development of more competent algorithms will determine the rate and level of success for the ambitions around autonomous vehicles. In this thesis work an intersection management system for a mix of autonomous and manually driven vehicles is created. The purpose is to investigate the strategy to combine turn intention prediction for manually driven vehicles with scheduling of autonomous vehicle. The prediction method used is support vector machine (SVM) and scheduling of vehicles have been made by dividing the intersection into an occupancy grid and apply different safety levels. Real-life data comprising recordings of large volumes of traffic through an intersection has been combined with simulated vehicles to assess the relevance of the new algorithms. Measurements of collision rate and traffic flow showed that the algorithms behaved as expected. A miniature vehicle based on a prototype for an autonomous RC-car has been designed with the purpose of testing of the algorithms in a laboratory setting. / Införandet av autonoma fordon i trafiken drivs av förväntade vinster i flera områden, såsom förbättring av hälsa och säkerhet, bättre resursutnyttjande, minskning av föroreningar och ökad bekvämlighet. Utvecklingen av mer kompetenta algoritmer kommer att bestämma hastigheten och nivån på framgång för ambitionerna kring autonoma fordon. I detta examensarbete skapas ett korsningshanteringssystem för en blandning av autonoma och självkörande bilar. Syftet är att undersöka strategin att kombinera prediktion av hur manuellt styrda bilar kommer att svänga med att schemalägga autonoma bilar utifrån detta. Prediktionsmetoden som använts är support vector machine (SVM) och schemaläggning av bilar har gjorts genom att dela upp korsningen i ett occupancy grid och tillämpa olika säkerhetsmarginaler. Verklig data från inspelningar av stora volymer trafik genom en korsning har kombinerats med simulerade fordon för att bedöma relevansen av de nya algoritmerna. Mätningar av kollisioner och trafikflöde visade att algoritmerna uppträdde som förväntat. Ett miniatyrfordon baserat på en prototyp av en självkörande radiostyrd bil har tagits fram i syfte att testa algoritmerna i laboratoriemiljö.

Page generated in 0.0517 seconds