• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise de discretizações e interpolações em malhas icosaédricas e aplicações em modelos de transporte semi-lagrangianos / Analysis of discretizations and interpolations on icosahedral grids and applications to semi-Lagrangian transport models

Peixoto, Pedro da Silva 12 June 2013 (has links)
A esfera é utilizada como domínio computacional na modelagem de diversos fenômenos físicos, como em previsão numérica do tempo. Sua discretização pode ser feita de diversas formas, sendo comum o uso de malha regulares em latitude/longitude. Recentemente, também para melhor uso de computação paralela, há uma tendência ao uso de malhas mais isotrópicas, dentre as quais a icosaédrica. Apesar de já existirem modelos atmosféricos que usam malhas icosaédricas, não há consenso sobre as metodologias mais adequadas a esse tipo de malha. Nos propusemos, portanto, a estudar em detalhe diversos fatores envolvidos no desenvolvimento de modelos atmosféricos globais usando malhas geodésicas icosaédricas. A discretização usual por volumes finitos para divergente de um campo vetorial utiliza como base o Teorema da Divergência e a regra do ponto médio nas arestas das células computacionais. A distribuição do erro obtida com esse método apresenta uma forte relação com características geométricas da malha. Definimos o conceito geométrico de alinhamento de células computacionais e desenvolvemos uma teoria que serve de base para explicar interferências de malha na discretização usual do divergente. Destacamos os impactos de certas relações de alinhamento das células na ordem da discretização do método. A teoria desenvolvida se aplica a qualquer malha geodésica e também pode ser usada para os operadores rotacional e laplaciano. Investigamos diversos métodos de interpolação na esfera adequados a malhas icosaédricas, e abordamos o problema de interpolação e reconstrução vetorial na esfera em malhas deslocadas. Usamos métodos alternativos de reconstrução vetorial aos usados na literatura, em particular, desenvolvemos um método híbrido de baixo custo e boa precisão. Por fim, utilizamos as técnicas de discretização, interpolação e reconstrução vetorial analisadas em um método semi-lagrangiano para o transporte na esfera em malhas geodésicas icosaédricas. Realizamos experimentos computacionais de transporte, incluindo testes de deformações na distribuição do campo transportado, que mostraram a adequação da metodologia para uso em modelos atmosféricos globais. A plataforma computacional desenvolvida nesta tese, incluindo geração de malhas, interpolações, reconstruções vetoriais e um modelo de transporte, fornece uma base para o futuro desenvolvimento de um modelo atmosférico global em malhas icosaédricas. / Spherical domains are used to model many physical phenomena, as, for instance, global numerical weather prediction. The sphere can be discretized in several ways, as for example a regular latitude-longitude grid. Recently, also motivated by a better use of parallel computers, more isotropic grids have been adopted in atmospheric global circulation models. Among those, the icosahedral grids are promising. Which kind of discretization methods and interpolation schemes are the best to use on those grids are still a research subject. Discretization of the sphere may be done in many ways and, recently, to make better use of computational resources, researchers are adopting more isotropic grids, such as the icosahedral one. In this thesis, we investigate in detail the numerical methodology to be used in atmospheric models on icosahedral grids. The usual finite volume method of discretization of the divergence of a vector field is based on the divergence theorem and makes use of the midpoint rule for integration on the edges of computational cells. The error distribution obtained with this method usually presents a strong correlation with some characteristics of the icosahedral grid. We introduced the concept of cell alignment and developed a theory which explains the grid imprinting patterns observed with the usual divergence discretization. We show how grid alignment impacts in the order of the divergence discretization. The theory developed applies to any geodesic grid and can also be used for other operators such as curl and Laplacian. Several interpolation schemes suitable for icosahedral grids were analysed, including the vector interpolation and reconstruction problem on staggered grids. We considered alternative vector reconstruction methods, in particular, we developed a hybrid low cost and good precision method. Finally, employing the discretizations and interpolations previously analysed, we developed a semi-Lagrangian transport method for geodesic icosahedral grids. Several tests were carried out, including deformational test cases, which demonstrated that the methodology is suitable to use in global atmospheric models. The computational platform developed in this thesis, including mesh generation, interpolation, vector reconstruction and the transport model, provides a basis for future development of global atmospheric models on icosahedral grids.
2

Elementos finitos em fluidos dominados pelo fenômeno de advecção: um método semi-Lagrangeano. / Finite elements in convection dominated flows: a semi-Lagrangian method.

Hugo Marcial Checo Silva 07 July 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Os escoamentos altamente convectivos representam um desafio na simulação pelo método de elementos finitos. Com a solução de elementos finitos de Galerkin para escoamentos incompressíveis, a matriz associada ao termo convectivo é não simétrica, e portanto, a propiedade de aproximação ótima é perdida. Na prática as soluções apresentam oscilações espúrias. Muitos métodos foram desenvolvidos com o fim de resolver esse problema. Neste trabalho apresentamos um método semi- Lagrangeano, o qual é implicitamente um método do tipo upwind, que portanto resolve o problema anterior, e comparamos o desempenho do método na solução das equações de convecção-difusão e Navier-Stokes incompressível com o Streamline Upwind Petrov Galerkin (SUPG), um método estabilizador de reconhecido desempenho. No SUPG, as funções de forma e de teste são tomadas em espaços diferentes, criando um efeito tal que as oscilações espúrias são drasticamente atenuadas. O método semi-Lagrangeano é um método de fator de integração, no qual o fator é um operador de convecção que se desloca para um sistema de coordenadas móveis no fluido, mas restabelece o sistema de coordenadas Lagrangeanas depois de cada passo de tempo. Isto prevê estabilidade e a possibilidade de utilizar passos de tempo maiores.Existem muitos trabalhos na literatura analisando métodos estabilizadores, mas não assim com o método semi-Lagrangeano, o que representa a contribuição principal deste trabalho: reconhecer as virtudes e as fraquezas do método semi-Lagrangeano em escoamentos dominados pelo fenômeno de convecção. / Convection dominated flows represent a challenge for finite element method simulation. Many methods have been developed to address this problem. In this work we compare the performance of two methods in the solution of the convectiondiffusion and Navier-Stokes equations on environmental flow problems: the Streamline Upwind Petrov Galerkin (SUPG) and the semi-Lagrangian method. In Galerkin finite element methods for fluid flows, the matrix associated with the convective term is non-symmetric, and as a result, the best approximation property is lost. In practice, solutions are often corrupted by espurious oscillations. In this work, we present a semi- Lagrangian method, which is implicitly an upwind method, therefore solving the spurious oscillations problem, and a comparison between this semi-Lagrangian method and the Streamline Upwind Petrov Galerkin (SUPG), an stabilizing method of recognized performance. The SUPG method takes the interpolation and the weighting functions in different spaces, creating an effect so that the spurious oscillations are drastically attenuated. The semi-Lagrangean method is a integration factor method, in which the factor is an operator that shifts to a coordinate system that moves with the fluid, but it resets the Lagrangian coordinate system after each time step. This provides stability and the possibility to take bigger time steps. There are many works in the literature analyzing stabilized methods, but they do not analyze the semi-Lagrangian method, which represents the main contribution of this work: to recognize the strengths and weaknesses of the semi-Lagrangian method in convection dominated flows.
3

Elementos finitos em fluidos dominados pelo fenômeno de advecção: um método semi-Lagrangeano. / Finite elements in convection dominated flows: a semi-Lagrangian method.

Hugo Marcial Checo Silva 07 July 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Os escoamentos altamente convectivos representam um desafio na simulação pelo método de elementos finitos. Com a solução de elementos finitos de Galerkin para escoamentos incompressíveis, a matriz associada ao termo convectivo é não simétrica, e portanto, a propiedade de aproximação ótima é perdida. Na prática as soluções apresentam oscilações espúrias. Muitos métodos foram desenvolvidos com o fim de resolver esse problema. Neste trabalho apresentamos um método semi- Lagrangeano, o qual é implicitamente um método do tipo upwind, que portanto resolve o problema anterior, e comparamos o desempenho do método na solução das equações de convecção-difusão e Navier-Stokes incompressível com o Streamline Upwind Petrov Galerkin (SUPG), um método estabilizador de reconhecido desempenho. No SUPG, as funções de forma e de teste são tomadas em espaços diferentes, criando um efeito tal que as oscilações espúrias são drasticamente atenuadas. O método semi-Lagrangeano é um método de fator de integração, no qual o fator é um operador de convecção que se desloca para um sistema de coordenadas móveis no fluido, mas restabelece o sistema de coordenadas Lagrangeanas depois de cada passo de tempo. Isto prevê estabilidade e a possibilidade de utilizar passos de tempo maiores.Existem muitos trabalhos na literatura analisando métodos estabilizadores, mas não assim com o método semi-Lagrangeano, o que representa a contribuição principal deste trabalho: reconhecer as virtudes e as fraquezas do método semi-Lagrangeano em escoamentos dominados pelo fenômeno de convecção. / Convection dominated flows represent a challenge for finite element method simulation. Many methods have been developed to address this problem. In this work we compare the performance of two methods in the solution of the convectiondiffusion and Navier-Stokes equations on environmental flow problems: the Streamline Upwind Petrov Galerkin (SUPG) and the semi-Lagrangian method. In Galerkin finite element methods for fluid flows, the matrix associated with the convective term is non-symmetric, and as a result, the best approximation property is lost. In practice, solutions are often corrupted by espurious oscillations. In this work, we present a semi- Lagrangian method, which is implicitly an upwind method, therefore solving the spurious oscillations problem, and a comparison between this semi-Lagrangian method and the Streamline Upwind Petrov Galerkin (SUPG), an stabilizing method of recognized performance. The SUPG method takes the interpolation and the weighting functions in different spaces, creating an effect so that the spurious oscillations are drastically attenuated. The semi-Lagrangean method is a integration factor method, in which the factor is an operator that shifts to a coordinate system that moves with the fluid, but it resets the Lagrangian coordinate system after each time step. This provides stability and the possibility to take bigger time steps. There are many works in the literature analyzing stabilized methods, but they do not analyze the semi-Lagrangian method, which represents the main contribution of this work: to recognize the strengths and weaknesses of the semi-Lagrangian method in convection dominated flows.
4

Análise de discretizações e interpolações em malhas icosaédricas e aplicações em modelos de transporte semi-lagrangianos / Analysis of discretizations and interpolations on icosahedral grids and applications to semi-Lagrangian transport models

Pedro da Silva Peixoto 12 June 2013 (has links)
A esfera é utilizada como domínio computacional na modelagem de diversos fenômenos físicos, como em previsão numérica do tempo. Sua discretização pode ser feita de diversas formas, sendo comum o uso de malha regulares em latitude/longitude. Recentemente, também para melhor uso de computação paralela, há uma tendência ao uso de malhas mais isotrópicas, dentre as quais a icosaédrica. Apesar de já existirem modelos atmosféricos que usam malhas icosaédricas, não há consenso sobre as metodologias mais adequadas a esse tipo de malha. Nos propusemos, portanto, a estudar em detalhe diversos fatores envolvidos no desenvolvimento de modelos atmosféricos globais usando malhas geodésicas icosaédricas. A discretização usual por volumes finitos para divergente de um campo vetorial utiliza como base o Teorema da Divergência e a regra do ponto médio nas arestas das células computacionais. A distribuição do erro obtida com esse método apresenta uma forte relação com características geométricas da malha. Definimos o conceito geométrico de alinhamento de células computacionais e desenvolvemos uma teoria que serve de base para explicar interferências de malha na discretização usual do divergente. Destacamos os impactos de certas relações de alinhamento das células na ordem da discretização do método. A teoria desenvolvida se aplica a qualquer malha geodésica e também pode ser usada para os operadores rotacional e laplaciano. Investigamos diversos métodos de interpolação na esfera adequados a malhas icosaédricas, e abordamos o problema de interpolação e reconstrução vetorial na esfera em malhas deslocadas. Usamos métodos alternativos de reconstrução vetorial aos usados na literatura, em particular, desenvolvemos um método híbrido de baixo custo e boa precisão. Por fim, utilizamos as técnicas de discretização, interpolação e reconstrução vetorial analisadas em um método semi-lagrangiano para o transporte na esfera em malhas geodésicas icosaédricas. Realizamos experimentos computacionais de transporte, incluindo testes de deformações na distribuição do campo transportado, que mostraram a adequação da metodologia para uso em modelos atmosféricos globais. A plataforma computacional desenvolvida nesta tese, incluindo geração de malhas, interpolações, reconstruções vetoriais e um modelo de transporte, fornece uma base para o futuro desenvolvimento de um modelo atmosférico global em malhas icosaédricas. / Spherical domains are used to model many physical phenomena, as, for instance, global numerical weather prediction. The sphere can be discretized in several ways, as for example a regular latitude-longitude grid. Recently, also motivated by a better use of parallel computers, more isotropic grids have been adopted in atmospheric global circulation models. Among those, the icosahedral grids are promising. Which kind of discretization methods and interpolation schemes are the best to use on those grids are still a research subject. Discretization of the sphere may be done in many ways and, recently, to make better use of computational resources, researchers are adopting more isotropic grids, such as the icosahedral one. In this thesis, we investigate in detail the numerical methodology to be used in atmospheric models on icosahedral grids. The usual finite volume method of discretization of the divergence of a vector field is based on the divergence theorem and makes use of the midpoint rule for integration on the edges of computational cells. The error distribution obtained with this method usually presents a strong correlation with some characteristics of the icosahedral grid. We introduced the concept of cell alignment and developed a theory which explains the grid imprinting patterns observed with the usual divergence discretization. We show how grid alignment impacts in the order of the divergence discretization. The theory developed applies to any geodesic grid and can also be used for other operators such as curl and Laplacian. Several interpolation schemes suitable for icosahedral grids were analysed, including the vector interpolation and reconstruction problem on staggered grids. We considered alternative vector reconstruction methods, in particular, we developed a hybrid low cost and good precision method. Finally, employing the discretizations and interpolations previously analysed, we developed a semi-Lagrangian transport method for geodesic icosahedral grids. Several tests were carried out, including deformational test cases, which demonstrated that the methodology is suitable to use in global atmospheric models. The computational platform developed in this thesis, including mesh generation, interpolation, vector reconstruction and the transport model, provides a basis for future development of global atmospheric models on icosahedral grids.
5

Análise de um método para equação de convecção formulado à luz da mecânica dos meios contínuos a advecção de anomalias oceânicas e meteorológicas / Analysis of a method for the convection equation formulated in the light of mechanical means of the continuous advection of oceanic and meteorological anomalies

Luciana Prado Mouta Pena 19 June 2006 (has links)
No presente trabalho estudamos e analisamos o método do Tubo de Trajetórias, um algoritmo conservativo, explícito, simples, fisicamente intuitivo, semi-Lagrangiano para equação de convecção. Mostramos que o método é incondicionalmente estável, essencialmente não-dispersivo, convergente e acurado de ordem 2 no tempo e no espaço. Soluções numéricas de sistemas e equações diferenciais ordinárias são testadas no contexto do método do Tubo de Trajetórias, com difíceis problemas clássicos. Aplicações são consideradas no âmbito do transporte oceânico e na advecção de frentes atmosféricas. A fim de testar as propriedades conservativas do método estudado, uma estimativa do erro de balanço de massa é usado aqui. Comparações com outras metodologias mostram a superioridade do método do Tubo de Trajetórias. / In the present work we studied and analyzed the Trajectories Tube method, a conservative, explicit, simple, physically intuitive, semi-Lagrangian algorithm for the convection equation. Kinematical aspects of the mechanics of continuous media are essentially the tools used for formulation and feasibility analysis. We showed that this method is unconditionally stable, essentially nondispersive, convergent and accurate of order two in time and space. Computational experiments with non-isochoric and isochoric motions show that the studied method can be used in compressible and incompressible flow. Numerical solutions of systems of ordinary differential equations (necessary conditions for acomplishment of the scheme) are tested in the Trajectories Tube method context, with classical difficult examples. Applications are considered in the ambit of oceanic transport and advection of atmospheric fronts, including the tracer problem within a Stommel gyre and the computation of the Dowell frontogenesis. Comparisions with other methodologies show the superiority of the Trajectories Tube method.
6

Análise de um método para equação de convecção formulado à luz da mecânica dos meios contínuos a advecção de anomalias oceânicas e meteorológicas / Analysis of a method for the convection equation formulated in the light of mechanical means of the continuous advection of oceanic and meteorological anomalies

Luciana Prado Mouta Pena 19 June 2006 (has links)
No presente trabalho estudamos e analisamos o método do Tubo de Trajetórias, um algoritmo conservativo, explícito, simples, fisicamente intuitivo, semi-Lagrangiano para equação de convecção. Mostramos que o método é incondicionalmente estável, essencialmente não-dispersivo, convergente e acurado de ordem 2 no tempo e no espaço. Soluções numéricas de sistemas e equações diferenciais ordinárias são testadas no contexto do método do Tubo de Trajetórias, com difíceis problemas clássicos. Aplicações são consideradas no âmbito do transporte oceânico e na advecção de frentes atmosféricas. A fim de testar as propriedades conservativas do método estudado, uma estimativa do erro de balanço de massa é usado aqui. Comparações com outras metodologias mostram a superioridade do método do Tubo de Trajetórias. / In the present work we studied and analyzed the Trajectories Tube method, a conservative, explicit, simple, physically intuitive, semi-Lagrangian algorithm for the convection equation. Kinematical aspects of the mechanics of continuous media are essentially the tools used for formulation and feasibility analysis. We showed that this method is unconditionally stable, essentially nondispersive, convergent and accurate of order two in time and space. Computational experiments with non-isochoric and isochoric motions show that the studied method can be used in compressible and incompressible flow. Numerical solutions of systems of ordinary differential equations (necessary conditions for acomplishment of the scheme) are tested in the Trajectories Tube method context, with classical difficult examples. Applications are considered in the ambit of oceanic transport and advection of atmospheric fronts, including the tracer problem within a Stommel gyre and the computation of the Dowell frontogenesis. Comparisions with other methodologies show the superiority of the Trajectories Tube method.

Page generated in 0.0582 seconds