• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 4
  • 2
  • 1
  • Tagged with
  • 113
  • 113
  • 33
  • 26
  • 20
  • 19
  • 18
  • 15
  • 14
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

Doping and electron stimulated desorption of zinc selenide grown by molecular beam epitaxy

VanMil, Brenda. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xi, 105 p. : ill. Includes abstract. Includes bibliographical references (p. 100-105).

Influence of carrier freeze-out on SiC Schottky junction admittance

Los, Andrei. January 2001 (has links)
Thesis (Ph. D.)--Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.

A study of Mg doping in GaN during molecular beam epitaxy /

Pang, Chak-hau. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 75-77).

First principles modeling of arsenic and fluorine behavior in crystalline silicon during ultrashallow junction formation

Harrison, Scott Anthony 28 August 2008 (has links)
Not available / text

First-principles and kinetic Monte Carlo simulation of dopant diffusion in strained Si and other materials

Lin, Li, 1973- 28 August 2008 (has links)
Not available / text

Monte Carlo modelling of Gunn devices incorporating thermal heating effects : investigations of broad frequency devices, heating effects in GaN devices and doping nucleation

Macpherson, Ross Fraser January 2009 (has links)
Monte Carlo modelling is a common technique in numerous fields, and is widely used in semiconductor device simulation. This thesis describes the application of Monte Carlo modelling to the simulation of Gunn diode devices, focusing on devices composed of Gallium Arsenide (GaAs) and Gallium Nitride (GaN). Gunn diodes are simple structures that take advantage of negative differential resistance to act as a source of high frequency radiation, from 10 GHz to over 100 GHz in GaAs devices. It has been theorised that GaN should exhibit negative differential resistance and a GaN Gunn diode could produce radiation of even higher frequency, within the terahertz band. Gunn diodes have the advantage of being cheap and portable, and so are worth exploring as such a source. Unfortunately, GaN devices have a high electron density and so they tend to generate heat quickly. It therefore becomes important to include modelling of heat generation and flow in simulations of these devices. This is uncommon in Monte Carlo models of Gunn diodes, as in less highly doped devices thermal effects can usually be assumed to result in the device reaching an equilibrium temperature of about 100 K above the ambient. This thesis describes the creation of a model to track the generation and distribution of heat during operation of a GaN device. Simulations found that thermal effects within the device were significant. Heat generation occurred to the extent that the device could only be operated in pulsed mode, with on pulses of 2 ns requiring 50 ns of cooling for sustainable operation. The increased temperature within the device also lead to deleterious changes in the Gunn diode's operating frequency. In the simulated device, a 150 K change in temperature lead to a decrease in operating frequency of 40 GHz, from an initial frequency of 280 GHz. At the end of 2 ns of operation, the mean temperature within the device had increased by 120 K. The high accidental doping level in GaN also means the use of a doping notch to act as a nucleation point for dipoles within a Gunn diode, a common technique in other materials, becomes less feasible. As an alternative to a notch, a device was simulated incorporating a doping spike to nucleate the dipole. The use of a doping spike is not novel, however its use in GaN has not been previously explored. Simulations found that a fully-depleted p-type doping notch of length 2.1 nm, doped at 1x1024 m-3 would act as a nucleation point for dipole operation. The device was compared to a simulated device incorporating a doping notch of width 0.25 µm doped at 0.5x1023 m-3 and found to operate at a similar frequency and RF efficiency, making it a viable substitute. One limitation of Gunn diodes is that when operated in transit-time mode, the operating frequency is determined by the length of the diode's transit region and so is well-defined and fixed. This means that traditional Gunn diodes are not as useful a source of radiation for spectroscopic applications as might be desirable. Recent experimental results for planar devices have shown a broadening in operation frequency and even multiple frequencies. This thesis explores the hypothesis that such a broadening might be achieved in a vertical structure via the incorporation of an additional notch into the Gunn diode's transit region, effectively incorporating two transit regions into the device. Results showed that this novel device structure did show multiple modes of operation. Under a DC applied voltage, the device showed spontaneous switching behaviour, oscillating between dipole and accumulation layer operation from the second notch. Changes in the frequency of an applied RF voltage would shift the device from operating from the first or second notch, in dipole and accumulation layer mode respectively.

A study of Mg doping in GaN during molecular beam epitaxy

彭澤厚, Pang, Chak-hau. January 2001 (has links)
published_or_final_version / Physics / Master / Master of Philosophy

Electron eigenvalues and eigenfunctions for a nanochannel with a finite rectangular barrier

Erwin January 1994 (has links)
Electron scattering by a single or multiple impurities affects the quantizaton of conductance of a semiconductor nanochannel. The theoretical model of electron transport in a hardwall nanostructure with an impurity requires an analysis of the electronic transverse energy levels, eigenfunctions and hopping integrals resulting from cross channel or transverse confinement. Theoretical equations for the electronic transverse energy levels, wavefunctions and hopping integrals in the case of a repulsive, finite strength rectangular barrier arbitrarily positioned in the nanochannel are presented. The effects of size, strength and location of the impurity are discussed.In order to find the electronic transverse energy levels, wavefunctions and hopping integrals, two FORTRAN computer programs were developed. The first, called Program Data Input, writes the computational parameters to a data file. The second, Program Single Impurity, uses this data file in performing the calculations of the electronic transverse energy levels, eigenfunctions and hopping integrals. / Department of Physics and Astronomy

Issues for p-type doping of GaN with Be and Mg grown by rf-plasma assisted molecular beam epitaxy

Lee, Kyoungnae. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains xvi, 145 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 142-145).

Cathodoluminescence and kinetics of gallium nitride doped with thulium

Tsou, Shih-En. January 2000 (has links)
Thesis (M.S.)--Ohio University, March, 2000. / Title from PDF t.p.

Page generated in 0.0943 seconds