• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • Tagged with
  • 37
  • 22
  • 11
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The characterization of some disordered systems

Passingham, Catherine January 1989 (has links)
No description available.
2

Study of lamellar structures in pure and mixed long chain n-alkanes and derivatives

Zeng, Xiangbing January 2000 (has links)
No description available.
3

Topological Constraint on Chain-Folding Structure of Semicrystalline Polymer

Wang, Kun 26 July 2019 (has links)
No description available.
4

Modélisation du comportement diffuso-mécanique d'un polymère semi-cristallin sous pression d'eau / Diffuso-Mechanical Modelling of Semicrystalline Polymer Under Water Pressure

Castro Lopez, William Camilo 11 September 2015 (has links)
La compréhension des couplages hydro-mécaniques pouvant influencer le comportement mécanique d’un polymère semi-cristallin (PSC) sous forte pression d’eau est à l’origine de ce travail de recherche.Afin de décrire des phénomènes de diffusion d’eau et leurs impacts sur le comportement mécanique du matériau lors d’un chargement multiaxial, l’influence des caractéristiques microstructurales sur le comportement diffuso-mécanique du matériau a été considérée dans la modélisation. Un modèle de comportement mécanique permettant de rendre compte du phénomène de cavitation généré par d’importantes déformations en traction et de l’évolution du comportement mécanique macroscopique vis-à-vis de la pression de confinement est ainsi couplé à un modèle de sorption dépendant de l’état microstructural du matériau. Une représentation multiphasique à différentes échelles est considérée : à une échelle ‘macroscopique’, le polymère cavité sous pression d’eau est assimilé à un milieu poreux constitué d’une phase solide (PSC) et une phase fluide (l’eau saturant les pores). A l’échelle du polymère, le comportement viscoplastique du PSC est modélisé à partir de la thermodynamique des milieux poreux, appuyé dans une représentation mésoscopique de sa microstructure, où le réseau cristallin interagit avec l’amorphe libre.Le modèle couplé a été implémenté dans un code de calcul par Eléments Finis. Les résultats de simulation démontrent la potentialité du modèle proposé, notamment sa capacité à capter des phénomènes de couplage entre la microstructure du matériau, la diffusion d’espèces et l’état de contraintes et déformations locales du matériau, permettant ainsi d’explorer des voies de compréhension des observations expérimentales. / Comprehension of the hydro-mechanical coupling affecting the mechanical behavior of a semicrystalline polymer (SCP) under high water pressure was the motivation of this research work.In order to describe the water diffusion phenomenon and its impact on the mechanical behavior of the SCP when multiaxial stresses are applied, the effect of the microstructure on the diffuso-mechanical behavior of the polymer was considered for modeling. A constitutive model including void nucleation and growth induced by large strains, and a dependence of the macroscopic mechanical behavior on hydrostatic pressure, is then coupled with a sorption model depending on the microstructure of the polymer.A multiphase representation at two scales is considered: at a ‘macroscopic’ scale, the cavitated SCP under water pressure is considered to be a saturated porous medium with the SCP as the solid phase, and the water saturating the voids as the fluid phase.At a lower scale, the viscoplastic behavior of the SCP has been modeled from the thermodynamics of porous media based on a meso-scale representation of its microstructure with the crystalline lamellae interacting with the free amorphous.The coupled model was implemented into a finite elements code. The simulation results demonstrate the potential of the proposed model, in particular its capability to take into account coupling phenomena between the microstructure of the material, species diffusion and the local state of stresses and strains which contributes to the comprehension of experimental observations.
5

Molecular Mechanics of Glassy And Semicrystalline Polymers

Razavi, Masoud 25 August 2020 (has links)
No description available.
6

Structure and Dynamics in Novel Polyolefin and Their Blends for Sustainability

Kafle, Navin K. 02 August 2023 (has links)
No description available.
7

Theoretical Modeling of Morphology Development in Blends of Semicrystalline Polymers Undergoing Photopolymerization

Rathi, Pankaj Jaiprakash 15 December 2009 (has links)
No description available.
8

Altering the fiber-matrix interphase in semicrystalline polymer matrix composites

Clark, Richard L. 04 December 2009 (has links)
When many semicrystalline polymers are used as matrix materials in composites, a morphology known as the transcrystalline region is formed on the surface of the reinforcing material. This region introduces a new crystalline structure to the system that is different from that of the bulk matrix material. Whether this region is advantageous or detrimental to the mechanical performance of the composite has been debated. Therefore, efforts were made to control the size and structure of this region for a specific composite system, i.e., nylon 66 reinforced with high modulus carbon fibers. In many systems this additional phase can be avoided simply by altering the crystallization history of the matrix polymer. In this study, the interphase region is removed not by changing the crystallization history of the matrix, but by altering the crystallization kinetics of the matrix material by introducing a diluent which is known to induce such changes in blends of itself and the host polymer. The diluent in this study is poly(vinyl pyrrolidone) (PVP) which is a highly polar, uncrystallizable polymer, and the host polymer is nylon 66 which is a highly polar crystallizable polymer. Initially, microscopy studies were performed on blends of nylon and two molecular weights of PVP at very low diluent concentrations, i.e., < 7% by weight. Next, commercial high modulus carbon fibers were unsized by exposure to a benzene wash. In addition, sets of the unsized fibers were sized with various amounts and molecular weights of the diluent by exposure to dilute solutions. Both unsized and sized fibers were then embedded in the previously made blends, and an optical study of the morphological changes in the interphase is performed. Furthermore, preliminary studies of the fiber surfaces using x-ray photoelectron spectroscopy (XPS) were conducted. PVP dramatically reduced the nucleation density of spherulites and modified the lamellar organization in the spherulites (as evidenced by the occurrence of banding which is the twisting of lamella as they grow radially). Furthermore, in the presence of unsized fibers, the addition of small amounts of diluent to the matrix increased the size of the transcrystalline region. At slightly higher diluent concentrations, the nucleation density on the fiber surface was reduced. Only with sizing of the fibers with the diluent along with adding the diluent to the matrix was there a complete removal of the transcrystalline region. / Master of Science
9

Multiscale Modeling of Structure-Property Relationships in Polymers with Heterogenous Structure

January 2017 (has links)
abstract: The exceptional mechanical properties of polymers with heterogeneous structure, such as the high toughness of polyethylene and the excellent blast-protection capability of polyurea, are strongly related to their morphology and nanoscale structure. Different polymer microstructures, such as semicrystalline morphology and segregated nanophases, lead to coordinated molecular motions during deformation in order to preserve compatibility between the different material phases. To study molecular relaxation in polyethylene, a coarse-grained model of polyethylene was calibrated to match the local structural variable distributions sampled from supercooled atomistic melts. The coarse-grained model accurately reproduces structural properties, e.g., the local structure of both the amorphous and crystalline phases, and thermal properties, e.g., glass transition and melt temperatures, and dynamic properties: including the vastly different relaxation time scales of the amorphous and crystalline phases. A hybrid Monte Carlo routine was developed to generate realistic semicrystalline configurations of polyethylene. The generated systems accurately predict the activation energy of the alpha relaxation process within the crystalline phase. Furthermore, the models show that connectivity to long chain segments in the amorphous phase increases the energy barrier for chain slip within crystalline phase. This prediction can guide the development of tougher semicrystalline polymers by providing a fundamental understanding of how nanoscale morphology contributes to chain mobility. In a different study, the macroscopic shock response of polyurea, a phase segregated copolymer, was analyzed using density functional theory (DFT) molecular dynamics (MD) simulations and classical MD simulations. The two models predict the shock response consistently up to shock pressures of 15 GPa, beyond which the DFT-based simulations predict a softer response. From the DFT simulations, an analysis of bond scission was performed as a first step in developing a more fundamental understanding of how shock induced material transformations effect the shock response and pressure dependent strength of polyurea subjected to extreme shocks. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2017
10

New Shape Memory Effects in Semicrystalline Polymeric Networks

Chung, Taekwoong 30 March 2009 (has links)
No description available.

Page generated in 0.0779 seconds