• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 31
  • 31
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Influências do rebaixamento do arco longitudinal medial e da bandagem plantar no controle postural / Influence of low plantar arch and foot taping on postural control

Licia Pazzoto Cacciari 24 October 2012 (has links)
Esta dissertação parte da premissa de que o desalinhamento dos arcos plantares estão associados ao mal funcionamento do pé e a subseqüentes desequilíbrios mecânicos gerados por compensações na cadeia cinética e articulações adjacentes. A bandagem plantar é uma das técnicas comumente utilizadas no tratamento e prevenção de lesões decorrentes destes desalinhamentos; no entanto, sua eficácia no controle postural ainda é incerta. Nossas hipóteses são: (i) que sujeitos com arco rebaixado apresentariam déficits do controle postural que se acentuariam em condições de perturbação sensorial, e (ii) que a bandagem aplicada no médio-­pé para melhorar a acuidade sensorial traria benefícios para o controle postural destes sujeitos, principalmente nas condições de perturbação. Assim, apresentaremos nesta dissertação dois estudos, um para investigar as alterações no controle postural de indivíduos com rebaixamento do arco plantar (estudo 1), e outro para investigar as consequências da utilização bandagem plantar nestes indivíduos (estudo 2). Para ambos os estudos, avaliamos a velocidade média e o root mean square da trajetória do centro de pressão durante a manutenção da postura quasi-­-estática em quatro condições de perturbação sensorial: (1) plataforma fixa, olhos abertos; (2) plataforma fixa, olhos fechados; (3) plataforma móvel, olhos abertos; e (4) plataforma móvel, olhos fechados. No estudo 1, 24 mulheres com arcos normais foram comparadas a 13 mulheres com arco rebaixado. No estudo 2, a comparação foi feita entre as condições sem e com a bandagem plantar para as 13 mulheres com arco rebaixado. Os resultados indicam que mulheres com rebaixamento do arco oscilam menos e mais lentamente que mulheres com arco normal, em particular na condição de maior perturbação sensorial, o que pode representar uma resposta pior, ou mais lenta de um sistema com desequilíbrios mecânicos decorrentes de um pé pouco funcional. Já a utilização da bandagem plantar resultou em aumento da oscilação do centro de pressão para a maioria das condições de perturbação sensorial, principalmente na direção médio-­-lateral, o que pode ser explicado por uma dificuldade dos sujeitos em se ajustar a uma nova postura, ou indicar um ganho de confiança e um melhor funcionamento do pé, traduzido pelo aumento da utilização dos ajustes posturais. / This dissertation is based on the premise that misalignment of plantar arches are associated to poor foot function and to subsequent mechanical compensations in the kinetic chain and adjacent joints. Foot taping is a commonly used technique in the treatment and prevention of injuries caused by these misalignments; however, its efficacy on postural control is still uncertain. Our hypotheses are: (i) subjects with low plantar arch would present postural control deficits, detectable by center of pressure sway measurement, that would be worsened in conditions of sensory perturbation, and (ii) foot taping, applied on midfoot with the intention to improve the cutaneous sensorial acuity, would bring benefits to the postural control of these subjects, especially under conditions of sensory perturbation. Thus, two studies will be presented: the first meant to investigate postural control alterations in individuals with low plantar arch (study 1), and the second, to investigate the effects of foot taping use in these subjects (study 2). For both studies, the mean velocity and root mean square of center of pressure trajectory were assessed during the maintenance of quasi-static stance in four conditions of sensory perturbations: (1) fixed support, eyes opened; (2) fixed support, eyes closed; (3) moving support, eyes opened, and (4) moving support, eyes closed. In study 1, 24 women with normal plantar arch were compared to 13 with low plantar arch. For study 2, the same 13 low arched subjects were assessed with and without foot taping. Results indicate that women with low plantar arch have less and slower center of pressure sway, particularly in the condition of highest sensory perturbation level, which may indicate a worsened, or slower, response of a mechanically altered system. When foot taping was applied to the low arched individuals, a higher and faster center of pressure sway was observed in most of the sensory perturbation conditions, especially in the medio-lateral direction. This could be explained either by a difficulty for the subjects to adapt to a new imposed postural condition, or by a gain in confidence while using the taping, reflected by the increase in postural adjustments.
22

Electrocutaneous stimulation to close the loop in myoelectric prosthesis control

Hartmann, Cornelia 22 November 2016 (has links)
No description available.
23

Physiological inputs to cerebrospinal fluid-contacting neurons / Apports physiologiques des neurones au contact du liquide céphalorachidien

Böhm, Urs Lucas 16 September 2016 (has links)
Les neurones au contact du liquide céphalorachidien (CSF-cNs) sont des cellules ciliées présentes tout autour du canal central de la moelle épinière. Ces cellules sont GABAergiques, déploient une brosse de microvillosités à l'intérieur de la lumière du canal et sont caractérisées par une expression du canal ionique Pkd2l1. Ceci les désigne comme de potentielles cellules sensorielles. Il a été montré que les CSF-cNs peuvent moduler la locomotion et qu'elles réagissent aux variations de pH in vitro. Cependant les modalités sensorielles transmises par ces cellules et leur implication dans la fonction locomotrice nous échappent encore. Dans ma thèse, j'étudie la fonction sensorielle des CSF-cNs dans la moelle épinière de la larve de poisson zèbre. En combinant le relargage de proton et l'imagerie pH avec l'imagerie calcique, nous avons pu montrer que les CSF-cNs répondent à des pics d'acidification in vivo et que cette réponse persiste dans des mutants pkd2l1. Nous démontrons également que les CSF-cNs ne sont pas activés de façon coordonnée lors de la locomotion fictive. Les mouvements actifs ou passifs de la queue conduisent toutefois à l'activation spécifique des CSF-cNs ipsilatérales de la contraction musculaire. Ces observations suggèrent que les CSF-cNs sont recrutées par une stimulation mécanique. Les mutants pkd2l1 ont montré une diminution de la réponse à la flexion active et passive de la queue et une diminution de la fréquence de battement de la queue. Dans son ensemble, le travail présenté ici met donc en évidence que les CSF-cNs répondent aux variations de pH in vivo et révèle leur rôle d'organe mécanosensoriel permettant la modulation du réseau locomoteur spinal. / Cerebrospinal fluid-contacting neurons (CSF-cNs) are ciliated cells surrounding the central canal. These cells are GABAergic, extend a brush of microvilli into the lumen and are specified by the expression of the transient receptor potential ion channel Pkd2l1. The atypical morphology of CSF-cNs and their location make them candidates for sensory cells. It has been shown that CSF-cNs modulate locomotion by projecting onto the locomotor central pattern generators (CPGs) and that CSF-cNs can react to changes of pH in vitro, but the sensory modality these cells convey to spinal circuits and their relevance to locomotion remain elusive. In my thesis I investigate the sensory function of CSF-cNs in the zebrafish larva spinal cord. By combining proton uncaging together with pH imaging and calcium imaging, we could show that CSF-cNs respond to pulses of acidification in vivo and that this response persists in pkd2l1 mutants. Using genetically encoded calcium sensors we showed that CSF-cNs are not coordinately activated during fictive locomotion. Active or passive tail movement, however, led to CSF-cN activation restrained to cells ipsilateral to muscle contraction. These observations suggest that CSF-cNs are recruited by ipsilateral muscle contraction and/or tail torsion. Pkd2l1 mutants showed a decreased response to active and passive bending of the tail and a subtle but consistent decrease of tail-beat frequency was observed in the startle response. Altogether, the presented work shows evidence that CSF-cNs respond to changes in CSF pH and reveals that CSF-cNs constitute a mechanosensory organ which operates during locomotion to modulate spinal CPGs.
24

HEXA: Hazardous EnvironmenteXpedition Apparatus : Design of a multi-terrain hexapodal robot that utilizes sensory feedback / HEXA: Hazardous Environment eXpedition Apparatus : Design av en flerterränggående hexapodal robot som använder sig av sensor återkoppling

Backne-Genborg, Linus, Hamberg, Viggo January 2022 (has links)
Many hexapods and other robots struggle with walking in uneven terrain, this is due to their lack of sensory feedback. This is the problem aimed to be solved by introducing a sensory feedback loop that measures the current over the servos. By doing this one could know whether or not the leg is in contact with the ground. If a successful sensor can be made, this method could be implemented on any hexapod that uses servos and inverse kinematics for their locomotion to enable them to walk in uneven terrain. With the complete system in place most of what was expected from the system was achieved. HEXA can indeed walk in uneven terrain where the terrain had the maximum height difference of ±2.3 cm, as seen in the video linked in appendix B. It also can detect when a leg has contact with the ground but due to low servo quality the walking could not be tested to its full extent. / Många hexapoder och andra robotar har svårigheter att gå i ojämn terräng, detta är på grund av hur de inte har någon form av senosoråterkoppling. Detta är problemet som siktas på att lösas genom att introducera en sensor återkopplings slinga som mäter stömmen över de olika servon. Genom att implementera detta kan en få reda på om benet har kontakt med marken eller ej. Om en lyckas senor kan skapas, skulle denna metod kunna implementeras till vilken annan hexapodal robot som använder sig av servos och inverse kinematik för sin framdriving. Med det kompletta systemet integrerat uppfylls nästan allt som var förväntad. HEXA kan gå i en ojämn terräng med den maximala höjdsillnaden av ±2.3 cm, som sett i videon i appendix B. Samt kan den märka av när ett av benen är i marken, men på grund av den låga servokvaliteten kunde inte gången testas till sin fulla förmåga.
25

Computer Simulation of the Neural Control of Locomotion in the Cat

Harischandra, Nalin January 2008 (has links)
Locomotion is one of the most important behaviours and requires interaction between sensors at various levels of the nervous system and the limb muscles of an animal. The basic neural rhythm for locomotion in mammals has been shown to arise from local neural networks residing in the spinal cord and these networks are known as central pattern generators (CPGs). However, during the locomotion, these centres are constantly interacting with the sensory feedback signals coming from muscles, joints and peripheral skin receptors in order to adapt the stepping to varying environmental conditions. Conceptual models of mammalian locomotion have been constructed using mathematical models of locomotor subsystems based on the abundance of neurophysiological evidence obtained primarily in the cat. Several aspects of locomotor control using the cat as an animal model have been investigated employing computer simulations and here we use the same approach to address number of questions or/and hypotheses related to rhythmic locomotion in quadrupeds. Some of the involve questions are, role of mechanical linkage during deafferented walking, finding inherent stabilities/instabilities of muscle-joint interactions during normal walking, estimating phase dependent controlability of muscle action over joints. This thesis presents the basics of a biologically realistic model of mammalian locomotion and summarises methodological approaches in modelling quadruped locomotor subsystems such as CPGs, limb muscles and sensory pathways. In the first appended article, we extensively discuss the construction details of the three-dimensional computer simulator for the study of the hind leg neuro-musculo-skeletal-control system and its interactions during normal walking of the cat. The simulator with the walking model is programmed in Python scripting language with other supported open source libraries such as Open Dynamics Engine (ODE) for simulating body dynamics and OpenGL for three dimensional graphical representation. We have examined the functionality of the simulator and the walking model by simulating deafferented walking. It was possible to obtain a realistic stepping in the hind legs even without sensory feedback to the two controllers (CPGs) for each leg. We conclude that the mechanical linkages between the legs also play a major role in producing alternating gait. The use of simulations of walking in the cat for gaining insights into more complex interactions between the environment and the neuro-muscular-skeletal system is important especially for questions where a direct neurophysiological experiment can not be performed on a real walking animal. For instance, it is experimentally hard to isolate individual mechanisms without disrupting the natural walking pattern. In the second article, we introduce a different approach where we use the walking model to identify what control is necessary to maintain stability in the musculo-skeletal system. We show that the actions of most of the hindlimb muscles over the joints have an inherent stability during stepping, even without the involvement of proprioceptive feedback mechanisms. In addition, we observe that muscles generating movements in the ankle joint of the hind leg must be controlled by neural mechanisms, which may involve supraspinal structures, over the whole step cycle. / QC 20101111
26

Sensor Fusion for Closed-loop Control of Upper-limb Prostheses

Markovic, Marko 18 April 2016 (has links)
No description available.
27

Integration of Sensory Feedback When Adapting to Novel Visuomotor Environments

Hinder, Mark Unknown Date (has links)
The aim of the research described in this thesis is to improve our understanding of how the central nervous system (CNS) integrates feedback information from different sensory modalities to permit skill acquisition, and the subsequent consolidation of that skill, when exposed to a novel visuomotor environment. Indeed, such adaptation must be consolidated and recalled when appropriate such that we do not have to continually relearn skills we once possessed. By manipulating the sensory feedback available from the visual and proprioceptive systems during learning, it is possible to determine those facets of the sensory feedback that are essential for adaptation to occur. The thesis consists of seven chapters. The first and last provide a conceptual basis for, and an overall discussion of, the research. Chapter 2 reviews current visuomotor adaptation research, with particular focus on the manner in which information about novel tasks is stored within the CNS as we adapt, and the sensory information that is necessary to allow this adaptation to occur. Furthermore, this chapter serves to introduce many of the experimental techniques that are used to investigate motor learning in humans. Chapter 3 is a report of an investigation of the issues of interference and consolidation in an isometric target acquisition task. Exposure to a 30° counter-clockwise (CCW) rotation was followed by a period of rest, trials with no rotation, or trials with a 60° clockwise (CW) rotation. Retention of the initial adaptation was assessed 5 hours later. Full interference was manifested in circumstances in which either counter-rotated or non-rotated trials were encountered following the initial learning period. These results are consistent with the view that the observed interference is anterograde in nature, and highlight differences in the mechanisms employed by the CNS when compensating for novel kinematics (e.g. visuomotor rotations) compared with adapting to novel dynamics (e.g. external forces). Chapter 4 is a report of an investigation of the role of visual feedback in adapting to novel visuomotor environments in an isometric target acquisition task. Following trials with no rotation, participants adapted to a 60° CCW visuomotor rotation before returning to the non-rotated condition. Separate groups received either continuous visual feedback (CF) of cursor position during task execution or post-trial visual feedback (PF), both indicating task performance. One CF group were instructed to make any (feedback) modifications necessary during the task to reduce errors and acquire the target, while another CF group were instructed to make uncorrected, ballistic movements. Colour cues permitted the identification of the task environment (nonrotated/ rotated) on every trial. The results indicate that an automatic recalibration of the visuomotor mapping occurs when CF is provided, and suggest that performance improvements with PF may occur via the adoption of a cognitively mediated strategy. Furthermore, execution of feedback motor commands to correct errors did not enhance the adaptation that occurred when CF was provided, indicating that the perception of sensory errors (and not feedback commands that may be applied to reduce those errors) drives feedforward visuomotor adaptation. To investigate whether additional proprioceptive feedback associated with movement altered the adaptation patterns observed in chapter 4, a study similar to that reported in chapter 4 was undertaken, and is reported in chapter 5. In this instance a discrete, goaldirected, movement task replaced the isometric task. Subjects were deprived of vision of their arm, but were provided with PF or CF indicating task performance. The patterns of adaptation noted in the isometric task were also exhibited in this dynamic task, indicating that the timing of the visual feedback of task performance has a profound effect on how performance improvements in a novel visuomotor rotation occur. The experiment reported in Chapter 6 assessed the ability to adapt to two conflicting visuomotor rotations interleaved within the same training period, when each task variant (rotation) could be identified by contextual (colour) cues. While full dual adaptation was not observed, the results suggest that the colour cues may have been utilised to explicitly select distinct motor commands for each task rotation.
28

Integration of Sensory Feedback When Adapting to Novel Visuomotor Environments

Hinder, Mark Unknown Date (has links)
The aim of the research described in this thesis is to improve our understanding of how the central nervous system (CNS) integrates feedback information from different sensory modalities to permit skill acquisition, and the subsequent consolidation of that skill, when exposed to a novel visuomotor environment. Indeed, such adaptation must be consolidated and recalled when appropriate such that we do not have to continually relearn skills we once possessed. By manipulating the sensory feedback available from the visual and proprioceptive systems during learning, it is possible to determine those facets of the sensory feedback that are essential for adaptation to occur. The thesis consists of seven chapters. The first and last provide a conceptual basis for, and an overall discussion of, the research. Chapter 2 reviews current visuomotor adaptation research, with particular focus on the manner in which information about novel tasks is stored within the CNS as we adapt, and the sensory information that is necessary to allow this adaptation to occur. Furthermore, this chapter serves to introduce many of the experimental techniques that are used to investigate motor learning in humans. Chapter 3 is a report of an investigation of the issues of interference and consolidation in an isometric target acquisition task. Exposure to a 30° counter-clockwise (CCW) rotation was followed by a period of rest, trials with no rotation, or trials with a 60° clockwise (CW) rotation. Retention of the initial adaptation was assessed 5 hours later. Full interference was manifested in circumstances in which either counter-rotated or non-rotated trials were encountered following the initial learning period. These results are consistent with the view that the observed interference is anterograde in nature, and highlight differences in the mechanisms employed by the CNS when compensating for novel kinematics (e.g. visuomotor rotations) compared with adapting to novel dynamics (e.g. external forces). Chapter 4 is a report of an investigation of the role of visual feedback in adapting to novel visuomotor environments in an isometric target acquisition task. Following trials with no rotation, participants adapted to a 60° CCW visuomotor rotation before returning to the non-rotated condition. Separate groups received either continuous visual feedback (CF) of cursor position during task execution or post-trial visual feedback (PF), both indicating task performance. One CF group were instructed to make any (feedback) modifications necessary during the task to reduce errors and acquire the target, while another CF group were instructed to make uncorrected, ballistic movements. Colour cues permitted the identification of the task environment (nonrotated/ rotated) on every trial. The results indicate that an automatic recalibration of the visuomotor mapping occurs when CF is provided, and suggest that performance improvements with PF may occur via the adoption of a cognitively mediated strategy. Furthermore, execution of feedback motor commands to correct errors did not enhance the adaptation that occurred when CF was provided, indicating that the perception of sensory errors (and not feedback commands that may be applied to reduce those errors) drives feedforward visuomotor adaptation. To investigate whether additional proprioceptive feedback associated with movement altered the adaptation patterns observed in chapter 4, a study similar to that reported in chapter 4 was undertaken, and is reported in chapter 5. In this instance a discrete, goaldirected, movement task replaced the isometric task. Subjects were deprived of vision of their arm, but were provided with PF or CF indicating task performance. The patterns of adaptation noted in the isometric task were also exhibited in this dynamic task, indicating that the timing of the visual feedback of task performance has a profound effect on how performance improvements in a novel visuomotor rotation occur. The experiment reported in Chapter 6 assessed the ability to adapt to two conflicting visuomotor rotations interleaved within the same training period, when each task variant (rotation) could be identified by contextual (colour) cues. While full dual adaptation was not observed, the results suggest that the colour cues may have been utilised to explicitly select distinct motor commands for each task rotation.
29

Multisensory Integration of Lower-Limb Somatosensory Neuroprostheses: from Psychophysics to Functionality

Christie, Breanne P. 28 January 2020 (has links)
No description available.
30

An investigation of the relationships between electrotactile stimulus parameters, primary afferent response, and perceived sensation / En undersökning av relationer mellan elektrotaktila stimulusparametrar, primär afferent respons och upplevd känsla

Vidmark, Jessica Sofie Louise January 2018 (has links)
Sensory feedback possesses the possibility of adding a new dimension to many applications, including, but not limited to, prosthetics and surgical robots for improved control, virtual reality for incorporation of another sense, and phantom limb pain reduction for amputees. Electrotactile stimulation provides a compact, light-weight, energy efficient, highly responsive, and non-invasive option for sensory feedback; however, it has been found to commonly elicit unnatural or uncomfortable sensations for the user. To address this issue, this thesis was designed to test the impact of the different electrotactile stimulus parameters – current amplitude and polarity, pulse width, frequency, and waveform – on the user’s perceived sensation and afferent neural response. The relationship between sensation and neural response was also analysed. The aim of this thesis was to create guidelines to assist in the design and use of electrotactile stimulation. Neural data and matching psychophysical data from one healthy subject and purely psychophysical data from three others were gathered while applying electrotactile stimulations of different parameter combinations on the dorsal side of the hand or lower arm. Significant (p < 0.05) correlations and differences were found in all three relationships between electrotactile stimulus parameters, primary afferent response, and perceived sensation. Current (specifically negative) or pulse width control in monophasic waveforms were deemed most appropriate in applications that relay information through varying intensity. However, monophasic waveforms produced more discomfort, rendering biphasic waveforms more suitable when mild, local, and more natural sensations are of greater importance. Surprisingly, the data also suggested higher sensitivity to positive currents. While lower values of current amplitude and pulse width increased neural spike count, stimulus frequency could reliably control neural firing at all tested frequencies. Spike counts were moderately to strongly correlated with perceived intensity; however, practically identical neural responses could elicit different sensations. High current pulses at low frequencies induced spikes with the shortest latency – but with greater risk of discomfort. Due to limitations in sample size, generalisability is limited, and this thesis should be considered a pilot study to guide future investigations. The results suggest that recording from single and multiple afferent nerve fibres simultaneously would improve the understanding of the neural population response to electrotactile stimuli. Moreover, the one-to-one neural response to electrotactile stimuli raised the question of whether an electrotactile stimulation based on a natural spike pattern could replicate the original sensation. A future study testing this hypothesis may find a new approach to designing painless electrotactile stimulations for sensory feedback use. / Sensorisk återkoppling har möjlighet att drastiskt förbättra många användningsområden, t.ex. genom att bidra till enklare kontroll av proteser och kirurgiska robotar, mer verklighetstrogna VR-spel, och minskade fantomsmärtor hos patienter med amputeringar. Elektrisk hudstimulering erbjuder ett kompakt, lätt, energisnålt, hög-responsivt och icke-invasivt alternativ för sensorisk återkoppling – dock framkallar denna metod ofta onaturliga och obehagliga förnimmelser för användaren. Detta examensarbete bemöter detta problem genom att undersöka effekten av stimuleringsparametrar som strömstyrka, pulsbredd, frekvens och vågform på försökspersonens upplevda förnimmelse samt den afferenta nervresponsen. Även relationen mellan förnimmelse och nervrespons analyserades. Examensarbetets ändamål var att skapa riktlinjer för att förenkla designen och användandet av elektrisk hudstimulering. Nervdata med matchande psykofysiska data samlades från en frisk försöksperson, samt enbart psykofysiska data från tre andra, under olika elektriska hudstimuleringar (med varierande parametervärden) på handens dorsala sida eller på underarmen. Signifikanta (p < 0.05) korrelationer och skillnader fanns i alla tre relationer mellan parametrarna för elektrisk hudstimulering, primärafferent respons och upplevd förnimmelse. Kontroll av ström (i synnerhet negativ) eller pulsbredd i monofasisk vågform visade sig vara mest fördelaktigt i applikationer där information kommuniceras till användaren genom att variera den upplevda intensiteten. Dock skapade denna vågform mer obehag, och bifasiska vågformer bedömdes mer passande då milda, lokala, och mer naturliga förnimmelser är av högre värde. Positiv ström upplevdes, förvånande, starkare än negativ. Vid låga värden på ström och pulsbredd var dessa faktorer viktiga gällande antalet aktionspotentialer (AP), men stimuleringsfrekvensen kunde kontrollera antalet AP vid alla frekvenser. Mängden AP var måttligt till starkt korrelaterad med upplevd intensitet – samtidigt kunde praktiskt taget identiska nervresponser vara kopplade till olika förnimmelser. Lågfrekvent stimulering med hög ström hade kortast latenstid, men högre risk för obehag. P.g.a. lågt antal försökspersoner är generaliserbarheten begränsad och detta examensarbete bör beaktas som en förstudie för att guida framtida forskning. Resultaten från denna studie antyder att en tydligare bild av populationsresponsen skulle kunna skapas genom samtidig läsning av ett flertal enskilda nervfibrer samtidigt. Det faktum att varje stimulering kunde ge upphov till en AP väckte frågan: kan ett stimuleringsmönster baserat på en naturlig nervrespons återskapa den ursprungliga förnimmelsen? En studie som testar denna hypotes har möjligheten att finna ett nytt tillvägagångssätt för att skapa smärtfri elektrisk hudstimulering för sensorisk återkoppling.

Page generated in 0.0554 seconds